mirror of https://github.com/hpcaitech/ColossalAI
192 lines
7.3 KiB
Python
192 lines
7.3 KiB
Python
|
from typing import Any, Dict, Iterator, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup
|
||
|
from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses
|
||
|
|
||
|
# find named_params includes replica
|
||
|
|
||
|
|
||
|
def _named_params_with_replica(
|
||
|
module: nn.Module,
|
||
|
prefix: str = '',
|
||
|
recurse: bool = True,
|
||
|
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
|
||
|
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
|
||
|
|
||
|
for mod_prefix, mod in modules:
|
||
|
for name, val in mod._parameters.items():
|
||
|
if val is None:
|
||
|
continue
|
||
|
name = mod_prefix + ('.' if mod_prefix else '') + name
|
||
|
yield name, val
|
||
|
|
||
|
|
||
|
def _convert_to_coloparam(param: torch.nn.Parameter,
|
||
|
device: torch.device,
|
||
|
dtype=torch.float,
|
||
|
default_pg: Optional[ProcessGroup] = None,
|
||
|
default_dist_spec: Optional[Any] = None) -> ColoParameter:
|
||
|
|
||
|
if type(param) is ColoParameter:
|
||
|
return param
|
||
|
# detaching tensor is necessary for optimizers.
|
||
|
requires_grad = param.requires_grad
|
||
|
# param is the global tensor.
|
||
|
|
||
|
if param.device.type == "meta":
|
||
|
colo_param = ColoParameter(param, requires_grad=requires_grad)
|
||
|
else:
|
||
|
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
|
||
|
|
||
|
# if default_shard_plan exists, shard the param during initialization.
|
||
|
# This can reduce the model size after initialization.
|
||
|
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
||
|
# the param that can not be sharded by the default plan
|
||
|
if default_pg is not None:
|
||
|
colo_param.set_process_group(default_pg)
|
||
|
|
||
|
if default_dist_spec is not None:
|
||
|
try:
|
||
|
colo_param.set_dist_spec(default_dist_spec)
|
||
|
except:
|
||
|
pass
|
||
|
return colo_param
|
||
|
|
||
|
|
||
|
def ColoModulize(module):
|
||
|
"""
|
||
|
Replacing the parameters() and named_parameters() with our customized ones
|
||
|
"""
|
||
|
|
||
|
module._colo_visited = True
|
||
|
|
||
|
|
||
|
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||
|
|
||
|
def __init__(self,
|
||
|
device: torch.device = torch.device('cpu'),
|
||
|
dtype: torch.dtype = torch.float,
|
||
|
default_pg: Optional[ProcessGroup] = None,
|
||
|
default_dist_spec=None):
|
||
|
"""
|
||
|
Args:
|
||
|
device (torch.device): the device where parameters initialized are resident. Defaults to torch.device('cpu').
|
||
|
dtype (torch.dtype): the dtype of parameters initialized. Defults to torch.float.
|
||
|
default_pg (ProcessGroup): the default process group for all initialized parameters.
|
||
|
default_dist_spec: the default distributed specifications.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self._device = device
|
||
|
self._dtype = dtype
|
||
|
|
||
|
self._register_colo_modules()
|
||
|
self._default_pg = default_pg
|
||
|
self._default_dist_spec = default_dist_spec
|
||
|
|
||
|
def _register_colo_modules(self):
|
||
|
from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
|
||
|
register_colo_module(torch.nn.Linear, ColoLinear())
|
||
|
register_colo_module(torch.nn.Embedding, ColoEmbedding())
|
||
|
|
||
|
def _pre_context_exec(self):
|
||
|
pass
|
||
|
|
||
|
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
|
||
|
"""
|
||
|
The function to call at the end of the constructor of each module.
|
||
|
FIXME(fjr) The module may be passed to this function multiple times?
|
||
|
"""
|
||
|
name_list = []
|
||
|
for name, param in _named_params_with_replica(module):
|
||
|
if type(param) is ColoParameter:
|
||
|
continue
|
||
|
|
||
|
split = name.rfind('.')
|
||
|
if split >= 0: # param in submodule
|
||
|
module_name = name[:split]
|
||
|
param_name = name[split + 1:]
|
||
|
else:
|
||
|
module_name = '' # param in current module
|
||
|
param_name = name
|
||
|
name_list.append((module_name, param_name))
|
||
|
|
||
|
replaced_tensors = dict(
|
||
|
) # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference
|
||
|
for module_name, param_name in name_list:
|
||
|
submodule = module.get_submodule(module_name)
|
||
|
param = submodule.get_parameter(param_name)
|
||
|
if param in replaced_tensors:
|
||
|
colo_param = replaced_tensors[param]
|
||
|
else:
|
||
|
colo_param = _convert_to_coloparam(param, self._device, self._dtype, self._default_pg,
|
||
|
self._default_dist_spec)
|
||
|
replaced_tensors[param] = colo_param
|
||
|
delattr(submodule, param_name)
|
||
|
setattr(submodule, param_name, colo_param)
|
||
|
colo_param.shared_param_modules.append(submodule)
|
||
|
|
||
|
param_number = 0
|
||
|
meta_param_number = 0
|
||
|
buffer_number = 0
|
||
|
meta_buffer_number = 0
|
||
|
|
||
|
for param in module.parameters():
|
||
|
param_number += 1
|
||
|
meta_param_number += (param.device.type == 'meta')
|
||
|
|
||
|
for buffer in module.buffers():
|
||
|
buffer_number += 1
|
||
|
meta_buffer_number += (buffer.device.type == 'meta')
|
||
|
|
||
|
if meta_param_number > 0 and meta_param_number != param_number:
|
||
|
raise ValueError("Meta parameters and valued parameters can not be in the same model")
|
||
|
if meta_buffer_number > 0 and meta_buffer_number != buffer_number:
|
||
|
raise ValueError("Meta buffers and valued buffers can not be in the same model")
|
||
|
|
||
|
if meta_buffer_number == 0:
|
||
|
for buffer in module.buffers():
|
||
|
buffer.data = buffer.data.to(device=self._device)
|
||
|
|
||
|
|
||
|
def post_process_colo_init_ctx(model: torch.nn.Module,
|
||
|
device: torch.device = torch.device('cpu'),
|
||
|
dtype: torch.dtype = torch.float,
|
||
|
default_pg: Optional[ProcessGroup] = None,
|
||
|
default_dist_spec=None):
|
||
|
"""post_process_colo_init_ctx
|
||
|
|
||
|
This function is called after `ColoInitContext`.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.module): the model
|
||
|
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu').
|
||
|
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float.
|
||
|
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Inidicates a DP-only process group.
|
||
|
default_dist_spec (Any, optional): default dist spec of params. Defaults to None.
|
||
|
|
||
|
Raises:
|
||
|
RuntimeError: raise error if
|
||
|
"""
|
||
|
|
||
|
torch_params = []
|
||
|
for n, p in model.named_parameters():
|
||
|
if not isinstance(p, ColoParameter):
|
||
|
# print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter")
|
||
|
torch_params.append((n, p))
|
||
|
|
||
|
for (n, param) in torch_params:
|
||
|
name_list = n.split('.')
|
||
|
module = model
|
||
|
for i in range(len(name_list) - 1):
|
||
|
module = module._modules[name_list[i]]
|
||
|
delattr(module, name_list[-1])
|
||
|
setattr(module, name_list[-1], _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec))
|
||
|
|
||
|
del torch_params
|
||
|
for n, p in model.named_parameters():
|
||
|
if not isinstance(p, ColoTensor):
|
||
|
raise RuntimeError
|