[hotfix] hotfix Gemini for no leaf modules bug (#2043)

pull/2045/head
Jiarui Fang 2 years ago committed by GitHub
parent 384cd26314
commit 31c644027b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,10 +1,10 @@
from typing import Dict, Iterator, Optional, Tuple, Union
from typing import Any, Dict, Iterator, Optional, Tuple, Union
import torch
from torch import nn
from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup, ShardSpec
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup
from .utils import InsertPostInitMethodToModuleSubClasses
@ -26,6 +26,34 @@ def _named_params_with_replica(
yield name, val
def _convert_to_coloparam(param: torch.nn.Parameter,
device: torch.device,
dtype=torch.float,
default_pg: Optional[ProcessGroup] = None,
default_dist_spec: Optional[Any] = None) -> ColoParameter:
if isinstance(param, ColoParameter):
return param
# detaching tensor is necessary for optimizers.
requires_grad = param.requires_grad
# param is the global tensor.
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
# if default_shard_plan exists, shard the param during initialization.
# This can reduce the model size after initialization.
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
# the param that can not be sharded by the default plan
if default_pg is not None:
colo_param.set_process_group(default_pg)
if default_dist_spec is not None:
try:
colo_param.set_dist_spec(default_dist_spec)
except:
pass
return colo_param
def ColoModulize(module):
"""
Replacing the parameters() and named_parameters() with our customized ones
@ -94,26 +122,8 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
if param in replaced_tensors:
colo_param = replaced_tensors[param]
else:
# detaching tensor is necessary for optimizers.
requires_grad = param.requires_grad
# param is the global tensor.
colo_param = ColoParameter(param.to(device=self._device, dtype=self._dtype),
requires_grad=requires_grad)
# if default_shard_plan exists, shard the param during initialization.
# This can reduce the model size after initialization.
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
# the param that can not be sharded by the default plan
if self._default_pg is not None:
colo_param.set_process_group(self._default_pg)
if self._default_dist_spec is not None:
try:
colo_param.set_dist_spec(self._default_dist_spec)
except:
pass
colo_param = _convert_to_coloparam(param, self._device, self._dtype, self._default_pg,
self._default_dist_spec)
replaced_tensors[param] = colo_param
delattr(submodule, param_name)
setattr(submodule, param_name, colo_param)
@ -121,3 +131,39 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
module.to(self._device)
ColoModulize(module)
def post_process_colo_init_ctx(model: torch.nn.Module,
device: torch.device = torch.device('cpu'),
dtype: torch.dtype = torch.float,
default_pg: Optional[ProcessGroup] = None,
default_dist_spec=None):
"""post_process_colo_init_ctx
This function is called after `ColoInitContext`.
Args:
model (torch.nn.module): the model
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu').
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float.
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Inidicates a DP-only process group.
default_dist_spec (Any, optional): default dist spec of params. Defaults to None.
Raises:
RuntimeError: raise error if
"""
torch_params = []
for n, p in model.named_parameters():
if not isinstance(p, ColoParameter):
print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter")
torch_params.append((n, p))
for (n, param) in torch_params:
delattr(model, n)
setattr(model, n, _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec))
del torch_params
for n, p in model.named_parameters():
if not isinstance(p, ColoTensor):
raise RuntimeError

@ -15,10 +15,11 @@ from colossalai.gemini.gemini_mgr import GeminiManager
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ColoParameter, ColoTensor
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx
from tests.components_to_test import run_fwd_bwd
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import debug_print, set_seed
@ -40,8 +41,7 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
# 'gpt2', 'bert',
TEST_MODELS = ['gpt2', 'bert']
EXAMPLE_MODELS = ['simple_net']
TEST_MODELS = ['no_leaf_module', 'gpt2', 'bert', 'simple_net', 'nested_model', 'repeated_computed_layers']
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@ -57,8 +57,12 @@ def exam_model_step(placement_policy, model_name: str):
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
with ColoInitContext(device=get_current_device()):
init_dev = get_current_device()
with ColoInitContext(device=init_dev):
model = model_builder()
post_process_colo_init_ctx(model, device=init_dev)
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)
@ -99,7 +103,7 @@ def exam_model_step(placement_policy, model_name: str):
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('model_name', EXAMPLE_MODELS)
@parameterize('model_name', TEST_MODELS)
def exam_tiny_example(placement_policy, model_name: str):
set_seed(2008)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
@ -111,8 +115,12 @@ def exam_tiny_example(placement_policy, model_name: str):
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
with ColoInitContext(device=get_current_device()):
init_dev = get_current_device()
with ColoInitContext(device=init_dev):
model = model_builder()
post_process_colo_init_ctx(model, device=init_dev)
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)

Loading…
Cancel
Save