|
|
|
@ -1,10 +1,10 @@
|
|
|
|
|
from typing import Dict, Iterator, Optional, Tuple, Union
|
|
|
|
|
from typing import Any, Dict, Iterator, Optional, Tuple, Union
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
|
|
from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
|
|
|
|
|
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup, ShardSpec
|
|
|
|
|
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup
|
|
|
|
|
|
|
|
|
|
from .utils import InsertPostInitMethodToModuleSubClasses
|
|
|
|
|
|
|
|
|
@ -26,6 +26,34 @@ def _named_params_with_replica(
|
|
|
|
|
yield name, val
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_to_coloparam(param: torch.nn.Parameter,
|
|
|
|
|
device: torch.device,
|
|
|
|
|
dtype=torch.float,
|
|
|
|
|
default_pg: Optional[ProcessGroup] = None,
|
|
|
|
|
default_dist_spec: Optional[Any] = None) -> ColoParameter:
|
|
|
|
|
|
|
|
|
|
if isinstance(param, ColoParameter):
|
|
|
|
|
return param
|
|
|
|
|
# detaching tensor is necessary for optimizers.
|
|
|
|
|
requires_grad = param.requires_grad
|
|
|
|
|
# param is the global tensor.
|
|
|
|
|
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
|
|
|
|
|
|
|
|
|
|
# if default_shard_plan exists, shard the param during initialization.
|
|
|
|
|
# This can reduce the model size after initialization.
|
|
|
|
|
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
|
|
|
|
# the param that can not be sharded by the default plan
|
|
|
|
|
if default_pg is not None:
|
|
|
|
|
colo_param.set_process_group(default_pg)
|
|
|
|
|
|
|
|
|
|
if default_dist_spec is not None:
|
|
|
|
|
try:
|
|
|
|
|
colo_param.set_dist_spec(default_dist_spec)
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
|
return colo_param
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ColoModulize(module):
|
|
|
|
|
"""
|
|
|
|
|
Replacing the parameters() and named_parameters() with our customized ones
|
|
|
|
@ -94,26 +122,8 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|
|
|
|
if param in replaced_tensors:
|
|
|
|
|
colo_param = replaced_tensors[param]
|
|
|
|
|
else:
|
|
|
|
|
# detaching tensor is necessary for optimizers.
|
|
|
|
|
requires_grad = param.requires_grad
|
|
|
|
|
|
|
|
|
|
# param is the global tensor.
|
|
|
|
|
colo_param = ColoParameter(param.to(device=self._device, dtype=self._dtype),
|
|
|
|
|
requires_grad=requires_grad)
|
|
|
|
|
|
|
|
|
|
# if default_shard_plan exists, shard the param during initialization.
|
|
|
|
|
# This can reduce the model size after initialization.
|
|
|
|
|
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
|
|
|
|
# the param that can not be sharded by the default plan
|
|
|
|
|
if self._default_pg is not None:
|
|
|
|
|
colo_param.set_process_group(self._default_pg)
|
|
|
|
|
|
|
|
|
|
if self._default_dist_spec is not None:
|
|
|
|
|
try:
|
|
|
|
|
colo_param.set_dist_spec(self._default_dist_spec)
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
colo_param = _convert_to_coloparam(param, self._device, self._dtype, self._default_pg,
|
|
|
|
|
self._default_dist_spec)
|
|
|
|
|
replaced_tensors[param] = colo_param
|
|
|
|
|
delattr(submodule, param_name)
|
|
|
|
|
setattr(submodule, param_name, colo_param)
|
|
|
|
@ -121,3 +131,39 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|
|
|
|
|
|
|
|
|
module.to(self._device)
|
|
|
|
|
ColoModulize(module)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def post_process_colo_init_ctx(model: torch.nn.Module,
|
|
|
|
|
device: torch.device = torch.device('cpu'),
|
|
|
|
|
dtype: torch.dtype = torch.float,
|
|
|
|
|
default_pg: Optional[ProcessGroup] = None,
|
|
|
|
|
default_dist_spec=None):
|
|
|
|
|
"""post_process_colo_init_ctx
|
|
|
|
|
|
|
|
|
|
This function is called after `ColoInitContext`.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
model (torch.nn.module): the model
|
|
|
|
|
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu').
|
|
|
|
|
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float.
|
|
|
|
|
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Inidicates a DP-only process group.
|
|
|
|
|
default_dist_spec (Any, optional): default dist spec of params. Defaults to None.
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
RuntimeError: raise error if
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
torch_params = []
|
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
|
if not isinstance(p, ColoParameter):
|
|
|
|
|
print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter")
|
|
|
|
|
torch_params.append((n, p))
|
|
|
|
|
|
|
|
|
|
for (n, param) in torch_params:
|
|
|
|
|
delattr(model, n)
|
|
|
|
|
setattr(model, n, _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec))
|
|
|
|
|
|
|
|
|
|
del torch_params
|
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
|
if not isinstance(p, ColoTensor):
|
|
|
|
|
raise RuntimeError
|
|
|
|
|