ColossalAI/colossalai/zero/gemini/colo_init_context.py

192 lines
7.3 KiB
Python

from typing import Any, Dict, Iterator, Optional, Tuple, Union
import torch
from torch import nn
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup
from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses
# find named_params includes replica
def _named_params_with_replica(
module: nn.Module,
prefix: str = '',
recurse: bool = True,
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
for mod_prefix, mod in modules:
for name, val in mod._parameters.items():
if val is None:
continue
name = mod_prefix + ('.' if mod_prefix else '') + name
yield name, val
def _convert_to_coloparam(param: torch.nn.Parameter,
device: torch.device,
dtype=torch.float,
default_pg: Optional[ProcessGroup] = None,
default_dist_spec: Optional[Any] = None) -> ColoParameter:
if type(param) is ColoParameter:
return param
# detaching tensor is necessary for optimizers.
requires_grad = param.requires_grad
# param is the global tensor.
if param.device.type == "meta":
colo_param = ColoParameter(param, requires_grad=requires_grad)
else:
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
# if default_shard_plan exists, shard the param during initialization.
# This can reduce the model size after initialization.
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
# the param that can not be sharded by the default plan
if default_pg is not None:
colo_param.set_process_group(default_pg)
if default_dist_spec is not None:
try:
colo_param.set_dist_spec(default_dist_spec)
except:
pass
return colo_param
def ColoModulize(module):
"""
Replacing the parameters() and named_parameters() with our customized ones
"""
module._colo_visited = True
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
def __init__(self,
device: torch.device = torch.device('cpu'),
dtype: torch.dtype = torch.float,
default_pg: Optional[ProcessGroup] = None,
default_dist_spec=None):
"""
Args:
device (torch.device): the device where parameters initialized are resident. Defaults to torch.device('cpu').
dtype (torch.dtype): the dtype of parameters initialized. Defults to torch.float.
default_pg (ProcessGroup): the default process group for all initialized parameters.
default_dist_spec: the default distributed specifications.
"""
super().__init__()
self._device = device
self._dtype = dtype
self._register_colo_modules()
self._default_pg = default_pg
self._default_dist_spec = default_dist_spec
def _register_colo_modules(self):
from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
register_colo_module(torch.nn.Linear, ColoLinear())
register_colo_module(torch.nn.Embedding, ColoEmbedding())
def _pre_context_exec(self):
pass
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
"""
The function to call at the end of the constructor of each module.
FIXME(fjr) The module may be passed to this function multiple times?
"""
name_list = []
for name, param in _named_params_with_replica(module):
if type(param) is ColoParameter:
continue
split = name.rfind('.')
if split >= 0: # param in submodule
module_name = name[:split]
param_name = name[split + 1:]
else:
module_name = '' # param in current module
param_name = name
name_list.append((module_name, param_name))
replaced_tensors = dict(
) # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference
for module_name, param_name in name_list:
submodule = module.get_submodule(module_name)
param = submodule.get_parameter(param_name)
if param in replaced_tensors:
colo_param = replaced_tensors[param]
else:
colo_param = _convert_to_coloparam(param, self._device, self._dtype, self._default_pg,
self._default_dist_spec)
replaced_tensors[param] = colo_param
delattr(submodule, param_name)
setattr(submodule, param_name, colo_param)
colo_param.shared_param_modules.append(submodule)
param_number = 0
meta_param_number = 0
buffer_number = 0
meta_buffer_number = 0
for param in module.parameters():
param_number += 1
meta_param_number += (param.device.type == 'meta')
for buffer in module.buffers():
buffer_number += 1
meta_buffer_number += (buffer.device.type == 'meta')
if meta_param_number > 0 and meta_param_number != param_number:
raise ValueError("Meta parameters and valued parameters can not be in the same model")
if meta_buffer_number > 0 and meta_buffer_number != buffer_number:
raise ValueError("Meta buffers and valued buffers can not be in the same model")
if meta_buffer_number == 0:
for buffer in module.buffers():
buffer.data = buffer.data.to(device=self._device)
def post_process_colo_init_ctx(model: torch.nn.Module,
device: torch.device = torch.device('cpu'),
dtype: torch.dtype = torch.float,
default_pg: Optional[ProcessGroup] = None,
default_dist_spec=None):
"""post_process_colo_init_ctx
This function is called after `ColoInitContext`.
Args:
model (torch.nn.module): the model
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu').
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float.
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Inidicates a DP-only process group.
default_dist_spec (Any, optional): default dist spec of params. Defaults to None.
Raises:
RuntimeError: raise error if
"""
torch_params = []
for n, p in model.named_parameters():
if not isinstance(p, ColoParameter):
# print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter")
torch_params.append((n, p))
for (n, param) in torch_params:
name_list = n.split('.')
module = model
for i in range(len(name_list) - 1):
module = module._modules[name_list[i]]
delattr(module, name_list[-1])
setattr(module, name_list[-1], _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec))
del torch_params
for n, p in model.named_parameters():
if not isinstance(p, ColoTensor):
raise RuntimeError