|
|
|
@ -58,6 +58,10 @@ class ColoTensor(object):
|
|
|
|
|
def shape(self): |
|
|
|
|
return torch.Size(self._size) |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def device(self): |
|
|
|
|
return self._torch_tensor.device |
|
|
|
|
|
|
|
|
|
def size(self, dim=None): |
|
|
|
|
if dim is None: |
|
|
|
|
return self.shape |
|
|
|
@ -105,14 +109,14 @@ class ColoTensor(object):
|
|
|
|
|
device=self._device) |
|
|
|
|
return self._torch_tensor |
|
|
|
|
|
|
|
|
|
def set_spec(self, spec: str, lazy_shard: bool=False) -> None: |
|
|
|
|
def set_spec(self, spec: str, lazy_shard: bool = False) -> None: |
|
|
|
|
self._shard_spec = spec |
|
|
|
|
if lazy_shard == False: |
|
|
|
|
self._shard() |
|
|
|
|
|
|
|
|
|
def _shard(self): |
|
|
|
|
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.' |
|
|
|
|
if self._shard_spec == "1Drow": # TODO It actually represents the sharding layout for Linear-1Drow-weight, but we make it simpler now. |
|
|
|
|
if self._shard_spec == "1Drow": # TODO It actually represents the sharding layout for Linear-1Drow-weight, but we make it simpler now. |
|
|
|
|
num_partition = gpc.get_world_size(ParallelMode.TENSOR) |
|
|
|
|
local_rank = gpc.get_local_rank(ParallelMode.TENSOR) |
|
|
|
|
dim = -1 |
|
|
|
@ -121,11 +125,11 @@ class ColoTensor(object):
|
|
|
|
|
# Reshape to get shard for this rank and we don't want autograd |
|
|
|
|
# recording here for the narrow op and 'local_shard' should be a |
|
|
|
|
# leaf variable in the autograd graph. |
|
|
|
|
self._torch_tensor = self._torch_tensor.narrow(dim, |
|
|
|
|
local_rank * chunk_size, chunk_size).detach().contiguous() # TODO Shall we clone() here since detach() will point to the old tensor? |
|
|
|
|
self._torch_tensor = self._torch_tensor.narrow(dim, local_rank * chunk_size, chunk_size).detach( |
|
|
|
|
).contiguous() # TODO Shall we clone() here since detach() will point to the old tensor? |
|
|
|
|
self._torch_tensor.requires_grad = self._requires_grad |
|
|
|
|
self._size = self._torch_tensor.size() |
|
|
|
|
self._device = device # TODO A `fake` device now because torch_tensor.device always = cpu |
|
|
|
|
self._device = device # TODO A `fake` device now because torch_tensor.device always = cpu |
|
|
|
|
|
|
|
|
|
@classmethod |
|
|
|
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
|
|
|