reorgnize colotensor directory (#1062)

* reorgnize colotensor directory

* polish code
pull/1066/head
Jiarui Fang 2022-06-03 18:04:22 +08:00 committed by GitHub
parent 3d10be33bd
commit a00644079e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 130 additions and 66 deletions

View File

@ -4,3 +4,7 @@ from .lr_scheduler import *
from .metric import *
from .model import *
from .optimizer import *
from ._ops import *
from .modules import ColoLinear, ColoEmbedding
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module

View File

@ -10,6 +10,7 @@ def register_colo_module(module_type: type, colo_module: ColoModule):
global _COLOSSAL_MODULES
_COLOSSAL_MODULES[module_type] = colo_module
def is_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
for module_type in _COLOSSAL_MODULES.keys():
@ -17,6 +18,7 @@ def is_colo_module(module: torch.nn.Module):
return True
return False
def get_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
if is_colo_module(module):
@ -26,6 +28,7 @@ def get_colo_module(module: torch.nn.Module):
else:
return None
def check_colo_module(module: torch.nn.Module, recursive=True):
if is_colo_module(module):
colo_module = get_colo_module(module)
@ -35,20 +38,22 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
param = module.get_parameter(param_name)
if not isinstance(param, ColoParameter):
raise Exception(f'Invalid ColoParameter spec: {param} in {module} is not a ColoParameter.')
if param.has_spec():
if param.has_spec():
cur_compute_pattern = param.spec.parallel_action.compute_pattern
if compute_pattern is None:
compute_pattern = cur_compute_pattern
else:
if cur_compute_pattern != compute_pattern:
raise Exception(f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.')
raise Exception(
f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.')
else:
continue
if compute_pattern is not None:
colo_module.register(compute_pattern)
if not colo_module.has_compute_pattern(compute_pattern):
raise Exception(f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
raise Exception(
f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
match_specs = False
allowed_specs = colo_module.get_dist_specs(compute_pattern)
@ -73,6 +78,7 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
for submodule in module.children():
check_colo_module(submodule, recursive=True)
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, mode='default'):
compute_pattern = parallel_action.compute_pattern
if is_colo_module(module):
@ -99,4 +105,3 @@ def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, r
if recursive == True:
for submodule in module.children():
init_colo_module(submodule, parallel_action, recursive=True, mode=mode)

View File

@ -4,11 +4,12 @@ from typing import List, Dict
class ColoModule(object):
def __init__(self):
self._shard_params: List[str] = []
# Example:
# {ComputePattern.TP1D:
# 'default':
# 'default':
# 'weight':
# distspec.shard(xxxxx)
# 'bias':
@ -21,25 +22,29 @@ class ColoModule(object):
def _register_shard_params(self, params: List[str]):
self._shard_params = params
def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], mode='default'):
assert list(dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.'
def _register_allowed_patterns(self,
compute_pattern: ComputePattern,
dist_specs: Dict[str, _DistSpec],
mode='default'):
assert list(
dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.'
if not compute_pattern in self._allowed_patterns:
self._allowed_patterns[compute_pattern] = {}
self._allowed_patterns[compute_pattern][mode] = dist_specs
def _set_default(self, compute_pattern: ComputePattern, target_mode):
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_mode]
def has_compute_pattern(self, compute_pattern: ComputePattern):
return compute_pattern in self._allowed_patterns
def get_dist_specs(self, compute_pattern: ComputePattern):
assert self.has_compute_pattern(compute_pattern)
return self._allowed_patterns[compute_pattern]
def has_compute_pattern_with_mode(self, compute_pattern: ComputePattern, mode='default'):
return compute_pattern in self._allowed_patterns and mode in self._allowed_patterns[compute_pattern]
def get_dist_specs_with_mode(self, compute_pattern: ComputePattern, mode='default'):
assert self.has_compute_pattern_with_mode(compute_pattern, mode)
return self._allowed_patterns[compute_pattern][mode]
@ -48,4 +53,4 @@ class ColoModule(object):
return self._shard_params
def register(self, compute_pattern):
raise NotImplementedError
raise NotImplementedError

View File

@ -3,23 +3,27 @@ from colossalai.tensor import ComputePattern, distspec
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
class ColoEmbedding(ColoModule):
def __init__(self):
super(ColoEmbedding, self).__init__()
self._register_shard_params(['weight'])
def register(self, compute_pattern):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
def _set_TP1D(self):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
},
mode='row',
)
@ -28,9 +32,11 @@ class ColoEmbedding(ColoModule):
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
},
mode='col',
)
self._set_default(compute_pattern=_compute_pattern, target_mode='row')
self._set_default(compute_pattern=_compute_pattern, target_mode='row')

View File

@ -3,24 +3,29 @@ from colossalai.tensor import ComputePattern, distspec
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
class ColoLinear(ColoModule):
def __init__(self):
super(ColoLinear, self).__init__()
self._register_shard_params(['weight', 'bias'])
def register(self, compute_pattern):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
def _set_TP1D(self):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': None
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias':
None
},
mode='row',
)
@ -29,8 +34,12 @@ class ColoLinear(ColoModule):
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)])
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)])
},
mode='col',
)

View File

@ -7,7 +7,9 @@ from .lamb import Lamb
from .lars import Lars
from .cpu_adam import CPUAdam
from .hybrid_adam import HybridAdam
from .colo_optimizer import ColoOptimizer
__all__ = [
'ColossalaiOptimizer', 'FusedLAMB', 'FusedAdam', 'FusedSGD', 'Lamb', 'Lars', 'CPUAdam', 'HybridAdam', 'CPU_ADAM_CNT'
'ColossalaiOptimizer', 'FusedLAMB', 'FusedAdam', 'FusedSGD', 'Lamb', 'Lars', 'CPUAdam', 'HybridAdam',
'CPU_ADAM_CNT', 'ColoOptimizer'
]

View File

@ -1,21 +1,14 @@
from .spec import ComputePattern, ParallelAction, TensorSpec
from .op_wrapper import (
colo_op_impl,)
from .colo_tensor import ColoTensor
from .colo_parameter import ColoParameter
from .utils import convert_parameter, named_params_with_colotensor
from ._ops import *
from .optim.colo_optimizer import ColoOptimizer
from . import distspec
from .dist_spec_mgr import DistSpecManager
from .param_op_hook import ParamOpHook, use_param_op_hooks
from .chunk import ChunkManager, TensorState
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
from .modules import ColoLinear, ColoEmbedding
__all__ = [
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
'named_params_with_colotensor', 'ColoOptimizer', 'ColoParameter', 'distspec', 'DistSpecManager',
'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module', 'ColoLinear',
'ColoEmbedding', 'ParamOpHook', 'use_param_op_hooks', 'ChunkManager', 'TensorState'
'ColoTensor', 'convert_parameter', 'ComputePattern', 'TensorSpec', 'ParallelAction', 'named_params_with_colotensor',
'ColoParameter', 'distspec', 'DistSpecManager', 'ParamOpHook', 'use_param_op_hooks', 'ChunkManager', 'TensorState'
]

View File

@ -1,9 +1,9 @@
from .colo_tensor import ColoTensor
from .const import TensorType
from colossalai.tensor.colo_tensor import ColoTensor
from colossalai.tensor.const import TensorType
import torch
from colossalai.tensor import TensorSpec, distspec
from copy import copy
from .param_op_hook import _ParamOpHookWrapper, PreFwdPostBwd, PostFwdPreBwd
from colossalai.tensor.param_op_hook import _ParamOpHookWrapper, PreFwdPostBwd, PostFwdPreBwd
from typing import Optional

View File

@ -1,11 +1,29 @@
from colossalai.tensor.distspec import _DistSpec
from colossalai.nn.layer.utils import divide
# from colossalai.nn.layer.utils import divide
from numpy import prod
from contextlib import contextmanager
import torch
import torch.distributed as dist
# TODO(jiaruifang) circle import, move the divide to colossalai.commons.
# colossalai.tensor shall not import any submodule from colossal.nn
def divide(numerator, denominator):
"""Only allow exact division.
Args:
numerator (int): Numerator of the division.
denominator (int): Denominator of the division.
Returns:
int: the result of exact division.
"""
assert denominator != 0, 'denominator can not be zero'
assert numerator % denominator == 0, \
'{} is not divisible by {}'.format(numerator, denominator)
return numerator // denominator
class TransformDistSpec(torch.autograd.Function):
@staticmethod

View File

@ -1,10 +1,8 @@
import torch
from colossalai.tensor.colo_tensor import ColoTensor
from typing import Iterator, Tuple, Union
import torch.nn as nn
from colossalai.tensor import ColoTensor
from colossalai.tensor.colo_tensor import ColoTensor
# The function is credited to PyTorch Team

View File

@ -1,11 +1,12 @@
from .utils import InsertPostInitMethodToModuleSubClasses
import torch
from colossalai.tensor import ColoTensor, ColoParameter, register_colo_module, init_colo_module, \
from colossalai.tensor import ColoTensor, ColoParameter
from colossalai.nn import register_colo_module, init_colo_module, \
ColoLinear, ColoEmbedding
import types
from torch import nn
from typing import Iterator, Tuple, Union, Optional
from typing import Iterator, Tuple, Union
# find named_params includes replica
@ -24,6 +25,7 @@ def _named_params_with_replica(
name = mod_prefix + ('.' if mod_prefix else '') + name
yield name, val
def ColoModulize(module):
"""
Replacing the parameters() and named_parameters() with our customized ones

View File

@ -1,9 +1,12 @@
from colossalai.utils import free_port, ColoInitContext, get_current_device
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, init_colo_module
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
from functools import partial
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from colossalai.nn import init_colo_module
from colossalai.nn.parallel import ColoDDP
import colossalai
@ -11,12 +14,14 @@ import torch
import torch.multiprocessing as mp
import pytest
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.embed = torch.nn.Embedding(20, 4)
self.proj = torch.nn.Linear(4, 8)
def forward(self, x):
# move input to cpu and restore output
current_dev = x.device
@ -27,6 +32,7 @@ class Net(torch.nn.Module):
x = self.proj(x)
return x
def run_hybrid_device(use_ddp):
with ColoInitContext(device=get_current_device()):
model = Net()
@ -36,7 +42,6 @@ def run_hybrid_device(use_ddp):
model = ColoDDP(model)
real_model = model.module
print(f'embedding weight size: {real_model.embed.weight.size()} | device: {real_model.embed.weight.device}')
#print(f'linear weight size: {real_model.proj.weight.size()} | device: {real_model.proj.weight.device}')
parallel_action = ParallelAction(ComputePattern.TP1D)
@ -49,11 +54,12 @@ def run_hybrid_device(use_ddp):
print(f'embedding weight size: {real_model.embed.weight.size()} | new device: {real_model.embed.weight.device}')
#print(f'linear weight size: {real_model.proj.weight.size()} | new device: {real_model.proj.weight.device}')
data = torch.randint(low=0, high=20, size=(16,), device=get_current_device())
out = model(data)
out.sum().backward()
def run_dist(rank, world_size, port, use_ddp):
if use_ddp and world_size == 1:
return
@ -62,6 +68,7 @@ def run_dist(rank, world_size, port, use_ddp):
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_hybrid_device(use_ddp)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.parametrize('use_ddp', [False, True])
@ -71,5 +78,6 @@ def _test_hybrid_device(world_size, use_ddp):
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
_test_hybrid_device(1, False)
_test_hybrid_device(1, False)

View File

@ -10,9 +10,10 @@ from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils import ColoInitContext
from colossalai.tensor import distspec, named_params_with_colotensor, TensorSpec, ComputePattern, \
ParallelAction, ColoTensor, ColoOptimizer, DistSpecManager
ParallelAction, ColoTensor, DistSpecManager
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.optimizer import ColoOptimizer
from functools import partial
from _utils import set_seed

View File

@ -1,24 +1,28 @@
from copy import copy
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.tensor import ColoTensor, distspec
import pytest
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
from colossalai.nn import init_colo_module, check_colo_module
from _utils import tensor_equal, tensor_shard_equal, set_seed
import colossalai
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.context.parallel_mode import ParallelMode
from colossalai.tensor import distspec
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager, register_colo_module, init_colo_module, check_colo_module
from _utils import tensor_equal, tensor_shard_equal, set_seed
from tests.components_to_test.registry import non_distributed_component_funcs
def run_model_with_spec(mode, model_name):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
@ -27,7 +31,7 @@ def run_model_with_spec(mode, model_name):
set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=False)
if rank == 0:
model_seq = model_builder(checkpoint=False)
model_seq = model_seq.cuda()
@ -103,15 +107,16 @@ def run_model_with_spec(mode, model_name):
if i > 3:
break
def run_linear_with_spec(mode):
with ColoInitContext(device=get_current_device()):
model = torch.nn.Linear(4, 8)
model_handy = copy(model)
parallel_action = ParallelAction(ComputePattern.TP1D)
init_colo_module(model, parallel_action, recursive=True, mode=mode)
x = torch.rand(2, 4).cuda()
out = model(x)
colo_out = model_handy(x)
@ -122,6 +127,7 @@ def run_linear_with_spec(mode):
assert tensor_shard_equal(model.weight.grad, model_handy.weight.grad)
assert tensor_shard_equal(model.bias.grad, model_handy.bias.grad)
def run_check_shared_param():
from transformers import BertForMaskedLM, BertConfig
hidden_dim = 8
@ -157,12 +163,14 @@ def run_check_shared_param():
except Exception as e:
assert 'incorrectly sharded' in str(e)
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_linear_with_spec('col')
run_linear_with_spec('row')
def run_dist_model(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@ -170,11 +178,13 @@ def run_dist_model(rank, world_size, port):
run_model_with_spec('col', model_name)
run_model_with_spec('row', model_name)
def run_dist_check(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_check_shared_param()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
@ -182,6 +192,7 @@ def test_module_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
@ -189,6 +200,7 @@ def test_module_model(world_size):
run_func = partial(run_dist_model, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
@ -196,5 +208,6 @@ def test_module_check(world_size):
run_func = partial(run_dist_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_module_check(2)
test_module_check(2)