diff --git a/colossalai/nn/__init__.py b/colossalai/nn/__init__.py index 3991e3bfb..7c37650ed 100644 --- a/colossalai/nn/__init__.py +++ b/colossalai/nn/__init__.py @@ -4,3 +4,7 @@ from .lr_scheduler import * from .metric import * from .model import * from .optimizer import * +from ._ops import * + +from .modules import ColoLinear, ColoEmbedding +from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module diff --git a/colossalai/tensor/_ops/__init__.py b/colossalai/nn/_ops/__init__.py similarity index 100% rename from colossalai/tensor/_ops/__init__.py rename to colossalai/nn/_ops/__init__.py diff --git a/colossalai/tensor/_ops/_utils.py b/colossalai/nn/_ops/_utils.py similarity index 100% rename from colossalai/tensor/_ops/_utils.py rename to colossalai/nn/_ops/_utils.py diff --git a/colossalai/tensor/_ops/addmm.py b/colossalai/nn/_ops/addmm.py similarity index 100% rename from colossalai/tensor/_ops/addmm.py rename to colossalai/nn/_ops/addmm.py diff --git a/colossalai/tensor/_ops/element_wise.py b/colossalai/nn/_ops/element_wise.py similarity index 100% rename from colossalai/tensor/_ops/element_wise.py rename to colossalai/nn/_ops/element_wise.py diff --git a/colossalai/tensor/_ops/embedding.py b/colossalai/nn/_ops/embedding.py similarity index 100% rename from colossalai/tensor/_ops/embedding.py rename to colossalai/nn/_ops/embedding.py diff --git a/colossalai/tensor/_ops/layernorm.py b/colossalai/nn/_ops/layernorm.py similarity index 100% rename from colossalai/tensor/_ops/layernorm.py rename to colossalai/nn/_ops/layernorm.py diff --git a/colossalai/tensor/_ops/linear.py b/colossalai/nn/_ops/linear.py similarity index 100% rename from colossalai/tensor/_ops/linear.py rename to colossalai/nn/_ops/linear.py diff --git a/colossalai/tensor/_ops/loss.py b/colossalai/nn/_ops/loss.py similarity index 100% rename from colossalai/tensor/_ops/loss.py rename to colossalai/nn/_ops/loss.py diff --git a/colossalai/tensor/module_utils.py b/colossalai/nn/module_utils.py similarity index 92% rename from colossalai/tensor/module_utils.py rename to colossalai/nn/module_utils.py index 9fa389171..64d3f8075 100644 --- a/colossalai/tensor/module_utils.py +++ b/colossalai/nn/module_utils.py @@ -10,6 +10,7 @@ def register_colo_module(module_type: type, colo_module: ColoModule): global _COLOSSAL_MODULES _COLOSSAL_MODULES[module_type] = colo_module + def is_colo_module(module: torch.nn.Module): global _COLOSSAL_MODULES for module_type in _COLOSSAL_MODULES.keys(): @@ -17,6 +18,7 @@ def is_colo_module(module: torch.nn.Module): return True return False + def get_colo_module(module: torch.nn.Module): global _COLOSSAL_MODULES if is_colo_module(module): @@ -26,6 +28,7 @@ def get_colo_module(module: torch.nn.Module): else: return None + def check_colo_module(module: torch.nn.Module, recursive=True): if is_colo_module(module): colo_module = get_colo_module(module) @@ -35,20 +38,22 @@ def check_colo_module(module: torch.nn.Module, recursive=True): param = module.get_parameter(param_name) if not isinstance(param, ColoParameter): raise Exception(f'Invalid ColoParameter spec: {param} in {module} is not a ColoParameter.') - if param.has_spec(): + if param.has_spec(): cur_compute_pattern = param.spec.parallel_action.compute_pattern if compute_pattern is None: compute_pattern = cur_compute_pattern else: if cur_compute_pattern != compute_pattern: - raise Exception(f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.') + raise Exception( + f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.') else: continue - + if compute_pattern is not None: colo_module.register(compute_pattern) if not colo_module.has_compute_pattern(compute_pattern): - raise Exception(f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.') + raise Exception( + f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.') match_specs = False allowed_specs = colo_module.get_dist_specs(compute_pattern) @@ -73,6 +78,7 @@ def check_colo_module(module: torch.nn.Module, recursive=True): for submodule in module.children(): check_colo_module(submodule, recursive=True) + def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, mode='default'): compute_pattern = parallel_action.compute_pattern if is_colo_module(module): @@ -99,4 +105,3 @@ def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, r if recursive == True: for submodule in module.children(): init_colo_module(submodule, parallel_action, recursive=True, mode=mode) - \ No newline at end of file diff --git a/colossalai/tensor/modules/__init__.py b/colossalai/nn/modules/__init__.py similarity index 100% rename from colossalai/tensor/modules/__init__.py rename to colossalai/nn/modules/__init__.py diff --git a/colossalai/tensor/modules/colo_module.py b/colossalai/nn/modules/colo_module.py similarity index 81% rename from colossalai/tensor/modules/colo_module.py rename to colossalai/nn/modules/colo_module.py index ecdfc1a59..2022411f9 100644 --- a/colossalai/tensor/modules/colo_module.py +++ b/colossalai/nn/modules/colo_module.py @@ -4,11 +4,12 @@ from typing import List, Dict class ColoModule(object): + def __init__(self): self._shard_params: List[str] = [] # Example: # {ComputePattern.TP1D: - # 'default': + # 'default': # 'weight': # distspec.shard(xxxxx) # 'bias': @@ -21,25 +22,29 @@ class ColoModule(object): def _register_shard_params(self, params: List[str]): self._shard_params = params - def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], mode='default'): - assert list(dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.' + def _register_allowed_patterns(self, + compute_pattern: ComputePattern, + dist_specs: Dict[str, _DistSpec], + mode='default'): + assert list( + dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.' if not compute_pattern in self._allowed_patterns: self._allowed_patterns[compute_pattern] = {} self._allowed_patterns[compute_pattern][mode] = dist_specs def _set_default(self, compute_pattern: ComputePattern, target_mode): self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_mode] - + def has_compute_pattern(self, compute_pattern: ComputePattern): return compute_pattern in self._allowed_patterns - + def get_dist_specs(self, compute_pattern: ComputePattern): assert self.has_compute_pattern(compute_pattern) return self._allowed_patterns[compute_pattern] - + def has_compute_pattern_with_mode(self, compute_pattern: ComputePattern, mode='default'): return compute_pattern in self._allowed_patterns and mode in self._allowed_patterns[compute_pattern] - + def get_dist_specs_with_mode(self, compute_pattern: ComputePattern, mode='default'): assert self.has_compute_pattern_with_mode(compute_pattern, mode) return self._allowed_patterns[compute_pattern][mode] @@ -48,4 +53,4 @@ class ColoModule(object): return self._shard_params def register(self, compute_pattern): - raise NotImplementedError \ No newline at end of file + raise NotImplementedError diff --git a/colossalai/tensor/modules/embedding.py b/colossalai/nn/modules/embedding.py similarity index 72% rename from colossalai/tensor/modules/embedding.py rename to colossalai/nn/modules/embedding.py index b48193971..9dd575a5b 100644 --- a/colossalai/tensor/modules/embedding.py +++ b/colossalai/nn/modules/embedding.py @@ -3,23 +3,27 @@ from colossalai.tensor import ComputePattern, distspec from colossalai.core import global_context as gpc from colossalai.context.parallel_mode import ParallelMode + class ColoEmbedding(ColoModule): + def __init__(self): super(ColoEmbedding, self).__init__() self._register_shard_params(['weight']) - + def register(self, compute_pattern): if not compute_pattern in self._allowed_patterns: if ComputePattern.TP1D == compute_pattern: self._set_TP1D() - + def _set_TP1D(self): # TP1D Row Linear _compute_pattern = ComputePattern.TP1D self._register_allowed_patterns( compute_pattern=_compute_pattern, dist_specs={ - 'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), + 'weight': + distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], + [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), }, mode='row', ) @@ -28,9 +32,11 @@ class ColoEmbedding(ColoModule): self._register_allowed_patterns( compute_pattern=_compute_pattern, dist_specs={ - 'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), + 'weight': + distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], + [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), }, mode='col', ) - self._set_default(compute_pattern=_compute_pattern, target_mode='row') \ No newline at end of file + self._set_default(compute_pattern=_compute_pattern, target_mode='row') diff --git a/colossalai/tensor/modules/linear.py b/colossalai/nn/modules/linear.py similarity index 63% rename from colossalai/tensor/modules/linear.py rename to colossalai/nn/modules/linear.py index 239cbeb1e..1cf32daf2 100644 --- a/colossalai/tensor/modules/linear.py +++ b/colossalai/nn/modules/linear.py @@ -3,24 +3,29 @@ from colossalai.tensor import ComputePattern, distspec from colossalai.core import global_context as gpc from colossalai.context.parallel_mode import ParallelMode + class ColoLinear(ColoModule): + def __init__(self): super(ColoLinear, self).__init__() self._register_shard_params(['weight', 'bias']) - + def register(self, compute_pattern): if not compute_pattern in self._allowed_patterns: if ComputePattern.TP1D == compute_pattern: self._set_TP1D() - + def _set_TP1D(self): # TP1D Row Linear _compute_pattern = ComputePattern.TP1D self._register_allowed_patterns( compute_pattern=_compute_pattern, dist_specs={ - 'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), - 'bias': None + 'weight': + distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], + [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), + 'bias': + None }, mode='row', ) @@ -29,8 +34,12 @@ class ColoLinear(ColoModule): self._register_allowed_patterns( compute_pattern=_compute_pattern, dist_specs={ - 'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), - 'bias': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]) + 'weight': + distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], + [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), + 'bias': + distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], + [gpc.get_world_size(ParallelMode.PARALLEL_1D)]) }, mode='col', ) diff --git a/colossalai/nn/optimizer/__init__.py b/colossalai/nn/optimizer/__init__.py index 14cb01c24..f9a2bc98f 100644 --- a/colossalai/nn/optimizer/__init__.py +++ b/colossalai/nn/optimizer/__init__.py @@ -7,7 +7,9 @@ from .lamb import Lamb from .lars import Lars from .cpu_adam import CPUAdam from .hybrid_adam import HybridAdam +from .colo_optimizer import ColoOptimizer __all__ = [ - 'ColossalaiOptimizer', 'FusedLAMB', 'FusedAdam', 'FusedSGD', 'Lamb', 'Lars', 'CPUAdam', 'HybridAdam', 'CPU_ADAM_CNT' + 'ColossalaiOptimizer', 'FusedLAMB', 'FusedAdam', 'FusedSGD', 'Lamb', 'Lars', 'CPUAdam', 'HybridAdam', + 'CPU_ADAM_CNT', 'ColoOptimizer' ] diff --git a/colossalai/tensor/optim/colo_optimizer.py b/colossalai/nn/optimizer/colo_optimizer.py similarity index 100% rename from colossalai/tensor/optim/colo_optimizer.py rename to colossalai/nn/optimizer/colo_optimizer.py diff --git a/colossalai/tensor/__init__.py b/colossalai/tensor/__init__.py index 008183280..a13cfbec1 100644 --- a/colossalai/tensor/__init__.py +++ b/colossalai/tensor/__init__.py @@ -1,21 +1,14 @@ from .spec import ComputePattern, ParallelAction, TensorSpec -from .op_wrapper import ( - colo_op_impl,) + from .colo_tensor import ColoTensor from .colo_parameter import ColoParameter from .utils import convert_parameter, named_params_with_colotensor -from ._ops import * -from .optim.colo_optimizer import ColoOptimizer from . import distspec from .dist_spec_mgr import DistSpecManager from .param_op_hook import ParamOpHook, use_param_op_hooks from .chunk import ChunkManager, TensorState -from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module -from .modules import ColoLinear, ColoEmbedding __all__ = [ - 'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction', - 'named_params_with_colotensor', 'ColoOptimizer', 'ColoParameter', 'distspec', 'DistSpecManager', - 'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module', 'ColoLinear', - 'ColoEmbedding', 'ParamOpHook', 'use_param_op_hooks', 'ChunkManager', 'TensorState' + 'ColoTensor', 'convert_parameter', 'ComputePattern', 'TensorSpec', 'ParallelAction', 'named_params_with_colotensor', + 'ColoParameter', 'distspec', 'DistSpecManager', 'ParamOpHook', 'use_param_op_hooks', 'ChunkManager', 'TensorState' ] diff --git a/colossalai/tensor/colo_parameter.py b/colossalai/tensor/colo_parameter.py index 74eaa0b97..ea040aca3 100644 --- a/colossalai/tensor/colo_parameter.py +++ b/colossalai/tensor/colo_parameter.py @@ -1,9 +1,9 @@ -from .colo_tensor import ColoTensor -from .const import TensorType +from colossalai.tensor.colo_tensor import ColoTensor +from colossalai.tensor.const import TensorType import torch from colossalai.tensor import TensorSpec, distspec from copy import copy -from .param_op_hook import _ParamOpHookWrapper, PreFwdPostBwd, PostFwdPreBwd +from colossalai.tensor.param_op_hook import _ParamOpHookWrapper, PreFwdPostBwd, PostFwdPreBwd from typing import Optional diff --git a/colossalai/tensor/dist_spec_mgr.py b/colossalai/tensor/dist_spec_mgr.py index a3e229899..a1722ff8f 100644 --- a/colossalai/tensor/dist_spec_mgr.py +++ b/colossalai/tensor/dist_spec_mgr.py @@ -1,11 +1,29 @@ from colossalai.tensor.distspec import _DistSpec -from colossalai.nn.layer.utils import divide +# from colossalai.nn.layer.utils import divide from numpy import prod from contextlib import contextmanager import torch import torch.distributed as dist +# TODO(jiaruifang) circle import, move the divide to colossalai.commons. +# colossalai.tensor shall not import any submodule from colossal.nn +def divide(numerator, denominator): + """Only allow exact division. + + Args: + numerator (int): Numerator of the division. + denominator (int): Denominator of the division. + + Returns: + int: the result of exact division. + """ + assert denominator != 0, 'denominator can not be zero' + assert numerator % denominator == 0, \ + '{} is not divisible by {}'.format(numerator, denominator) + return numerator // denominator + + class TransformDistSpec(torch.autograd.Function): @staticmethod diff --git a/colossalai/tensor/optim/__init__.py b/colossalai/tensor/optim/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/colossalai/tensor/utils.py b/colossalai/tensor/utils.py index 5abce8ca1..91cc3aeb9 100644 --- a/colossalai/tensor/utils.py +++ b/colossalai/tensor/utils.py @@ -1,10 +1,8 @@ import torch -from colossalai.tensor.colo_tensor import ColoTensor - from typing import Iterator, Tuple, Union import torch.nn as nn -from colossalai.tensor import ColoTensor +from colossalai.tensor.colo_tensor import ColoTensor # The function is credited to PyTorch Team diff --git a/colossalai/utils/model/colo_init_context.py b/colossalai/utils/model/colo_init_context.py index 807f9034a..87489f0ce 100644 --- a/colossalai/utils/model/colo_init_context.py +++ b/colossalai/utils/model/colo_init_context.py @@ -1,11 +1,12 @@ from .utils import InsertPostInitMethodToModuleSubClasses import torch -from colossalai.tensor import ColoTensor, ColoParameter, register_colo_module, init_colo_module, \ +from colossalai.tensor import ColoTensor, ColoParameter + +from colossalai.nn import register_colo_module, init_colo_module, \ ColoLinear, ColoEmbedding -import types from torch import nn -from typing import Iterator, Tuple, Union, Optional +from typing import Iterator, Tuple, Union # find named_params includes replica @@ -24,6 +25,7 @@ def _named_params_with_replica( name = mod_prefix + ('.' if mod_prefix else '') + name yield name, val + def ColoModulize(module): """ Replacing the parameters() and named_parameters() with our customized ones diff --git a/tests/test_tensor/test_hybrid_device.py b/tests/test_tensor/test_hybrid_device.py index 4a7a596a8..f1dcd8f20 100644 --- a/tests/test_tensor/test_hybrid_device.py +++ b/tests/test_tensor/test_hybrid_device.py @@ -1,9 +1,12 @@ from colossalai.utils import free_port, ColoInitContext, get_current_device from colossalai.testing import rerun_if_address_is_in_use -from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, init_colo_module +from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction + from functools import partial from colossalai.core import global_context as gpc from colossalai.context import ParallelMode + +from colossalai.nn import init_colo_module from colossalai.nn.parallel import ColoDDP import colossalai @@ -11,12 +14,14 @@ import torch import torch.multiprocessing as mp import pytest + class Net(torch.nn.Module): + def __init__(self): super(Net, self).__init__() self.embed = torch.nn.Embedding(20, 4) self.proj = torch.nn.Linear(4, 8) - + def forward(self, x): # move input to cpu and restore output current_dev = x.device @@ -27,6 +32,7 @@ class Net(torch.nn.Module): x = self.proj(x) return x + def run_hybrid_device(use_ddp): with ColoInitContext(device=get_current_device()): model = Net() @@ -36,7 +42,6 @@ def run_hybrid_device(use_ddp): model = ColoDDP(model) real_model = model.module - print(f'embedding weight size: {real_model.embed.weight.size()} | device: {real_model.embed.weight.device}') #print(f'linear weight size: {real_model.proj.weight.size()} | device: {real_model.proj.weight.device}') parallel_action = ParallelAction(ComputePattern.TP1D) @@ -49,11 +54,12 @@ def run_hybrid_device(use_ddp): print(f'embedding weight size: {real_model.embed.weight.size()} | new device: {real_model.embed.weight.device}') #print(f'linear weight size: {real_model.proj.weight.size()} | new device: {real_model.proj.weight.device}') - + data = torch.randint(low=0, high=20, size=(16,), device=get_current_device()) out = model(data) out.sum().backward() + def run_dist(rank, world_size, port, use_ddp): if use_ddp and world_size == 1: return @@ -62,6 +68,7 @@ def run_dist(rank, world_size, port, use_ddp): colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_hybrid_device(use_ddp) + @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @pytest.mark.parametrize('use_ddp', [False, True]) @@ -71,5 +78,6 @@ def _test_hybrid_device(world_size, use_ddp): run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp) mp.spawn(run_func, nprocs=world_size) + if __name__ == '__main__': - _test_hybrid_device(1, False) \ No newline at end of file + _test_hybrid_device(1, False) diff --git a/tests/test_tensor/test_model.py b/tests/test_tensor/test_model.py index 682146e1a..019152aa6 100644 --- a/tests/test_tensor/test_model.py +++ b/tests/test_tensor/test_model.py @@ -10,9 +10,10 @@ from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.utils import ColoInitContext from colossalai.tensor import distspec, named_params_with_colotensor, TensorSpec, ComputePattern, \ - ParallelAction, ColoTensor, ColoOptimizer, DistSpecManager + ParallelAction, ColoTensor, DistSpecManager from colossalai.context import ParallelMode from colossalai.core import global_context as gpc +from colossalai.nn.optimizer import ColoOptimizer from functools import partial from _utils import set_seed diff --git a/tests/test_tensor/test_module_spec.py b/tests/test_tensor/test_module_spec.py index 771662571..0a4e7c9d2 100644 --- a/tests/test_tensor/test_module_spec.py +++ b/tests/test_tensor/test_module_spec.py @@ -1,24 +1,28 @@ from copy import copy -from colossalai.utils.cuda import get_current_device -from colossalai.utils.model.colo_init_context import ColoInitContext -import torch -from colossalai.context.parallel_mode import ParallelMode -from colossalai.tensor import ColoTensor, distspec - +import pytest from functools import partial -import colossalai -import pytest import torch import torch.multiprocessing as mp -import torch.nn.functional as F + +from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction +from colossalai.nn import init_colo_module, check_colo_module +from _utils import tensor_equal, tensor_shard_equal, set_seed + +import colossalai +from colossalai.utils.cuda import get_current_device +from colossalai.utils.model.colo_init_context import ColoInitContext + +from colossalai.context.parallel_mode import ParallelMode +from colossalai.tensor import distspec + from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.core import global_context as gpc -from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager, register_colo_module, init_colo_module, check_colo_module -from _utils import tensor_equal, tensor_shard_equal, set_seed + from tests.components_to_test.registry import non_distributed_component_funcs + def run_model_with_spec(mode, model_name): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() @@ -27,7 +31,7 @@ def run_model_with_spec(mode, model_name): set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=False) - + if rank == 0: model_seq = model_builder(checkpoint=False) model_seq = model_seq.cuda() @@ -103,15 +107,16 @@ def run_model_with_spec(mode, model_name): if i > 3: break + def run_linear_with_spec(mode): with ColoInitContext(device=get_current_device()): model = torch.nn.Linear(4, 8) model_handy = copy(model) - + parallel_action = ParallelAction(ComputePattern.TP1D) init_colo_module(model, parallel_action, recursive=True, mode=mode) - + x = torch.rand(2, 4).cuda() out = model(x) colo_out = model_handy(x) @@ -122,6 +127,7 @@ def run_linear_with_spec(mode): assert tensor_shard_equal(model.weight.grad, model_handy.weight.grad) assert tensor_shard_equal(model.bias.grad, model_handy.bias.grad) + def run_check_shared_param(): from transformers import BertForMaskedLM, BertConfig hidden_dim = 8 @@ -157,12 +163,14 @@ def run_check_shared_param(): except Exception as e: assert 'incorrectly sharded' in str(e) + def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_linear_with_spec('col') run_linear_with_spec('row') + def run_dist_model(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') @@ -170,11 +178,13 @@ def run_dist_model(rank, world_size, port): run_model_with_spec('col', model_name) run_model_with_spec('row', model_name) + def run_dist_check(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_check_shared_param() + @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() @@ -182,6 +192,7 @@ def test_module_linear_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) + @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() @@ -189,6 +200,7 @@ def test_module_model(world_size): run_func = partial(run_dist_model, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) + @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() @@ -196,5 +208,6 @@ def test_module_check(world_size): run_func = partial(run_dist_check, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) + if __name__ == '__main__': - test_module_check(2) \ No newline at end of file + test_module_check(2)