[Tensor] add module check and bert test (#1031)

* add Embedding

* Add bert test

* polish

* add check module test

* polish

* polish

* polish

* polish
pull/1034/head
Ziyue Jiang 2022-05-26 18:15:42 +08:00 committed by GitHub
parent 7106bd671d
commit 6c5996a56e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 170 additions and 45 deletions

View File

@ -9,11 +9,11 @@ from .optim.colo_optimizer import ColoOptimizer
from . import distspec
from .dist_spec_mgr import DistSpecManager
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
from .modules import ColoLinear
from .modules import ColoLinear, ColoEmbedding
__all__ = [
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
'named_params_with_colotensor', 'ColoOptimizer', 'ColoParameter', 'distspec', 'DistSpecManager',
'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module',
'ColoLinear'
'ColoLinear', 'ColoEmbedding'
]

View File

@ -26,6 +26,13 @@ class ColoParameter(ColoTensor):
self._type = TensorType.MODEL
self._graph_node = None
# a list contains modules sharing this ColoParameter with others.
self._shared_param_modules = []
@property
def shared_param_modules(self):
return self._shared_param_modules
@staticmethod
def from_torch_tensor(tensor: torch.Tensor,
requires_grad: bool = True,
@ -36,3 +43,4 @@ class ColoParameter(ColoTensor):
def __repr__(self):
return f'ColoParameter: {torch.Tensor.__repr__(self)}'

View File

@ -30,6 +30,12 @@ class _DistSpec:
return False
return True
def __repr__(self) -> str:
res = "\nDistSpec:\n\t"
for attr in dir(self):
if not attr.startswith('__'):
res += f'{attr}: {str(getattr(self, attr))}\n\t'
return res
def replicate(process_group: Optional[ProcessGroup] = None) -> _DistSpec:
# process_group=None means global process group

View File

@ -18,7 +18,6 @@ def get_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
if is_colo_module(module):
colo_module = _COLOSSAL_MODULES[type(module)]
colo_module.register()
return colo_module
else:
return None
@ -43,6 +42,7 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
continue
if compute_pattern is not None:
colo_module.register(compute_pattern)
if not colo_module.has_compute_pattern(compute_pattern):
raise Exception(f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
@ -65,28 +65,34 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
break
if match_specs == False:
raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.')
if recursive == True:
for submodule in module.children():
check_colo_module(submodule, recursive=True)
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, label='default'):
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, mode='default'):
compute_pattern = parallel_action.compute_pattern
if is_colo_module(module):
# for each param
# set DistSpec and ParallelAction
colo_module = get_colo_module(module)
if not colo_module.has_compute_pattern_with_label(compute_pattern, label=label):
colo_module.register(compute_pattern)
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
raise NotImplementedError
for param_name, dist_spec in colo_module.get_dist_specs_with_label(compute_pattern, label=label).items():
# a set for modules which update at least one param in the init process.
# these modules need to be checked whether all params still match one of the valid compute pattern.
modules_update_param = {module}
for param_name, dist_spec in colo_module.get_dist_specs_with_mode(compute_pattern, mode=mode).items():
if dist_spec is None:
continue
param = module.get_parameter(param_name)
if isinstance(param, ColoParameter):
spec = TensorSpec(dist_spec, parallel_action)
param.set_spec(spec)
check_colo_module(module, recursive=False)
for mod in param.shared_param_modules:
modules_update_param.add(mod)
for mod in modules_update_param:
check_colo_module(mod, recursive=False)
if recursive == True:
for submodule in module.children():
init_colo_module(submodule, parallel_action, recursive=True, label=label)
init_colo_module(submodule, parallel_action, recursive=True, mode=mode)

View File

@ -1,2 +1,3 @@
from .colo_module import ColoModule
from .linear import ColoLinear
from .linear import ColoLinear
from .embedding import ColoEmbedding

View File

@ -21,14 +21,14 @@ class ColoModule(object):
def _register_shard_params(self, params: List[str]):
self._shard_params = params
def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], label='default'):
def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], mode='default'):
assert list(dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.'
if not compute_pattern in self._allowed_patterns:
self._allowed_patterns[compute_pattern] = {}
self._allowed_patterns[compute_pattern][label] = dist_specs
self._allowed_patterns[compute_pattern][mode] = dist_specs
def _set_default(self, compute_pattern: ComputePattern, target_label):
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_label]
def _set_default(self, compute_pattern: ComputePattern, target_mode):
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_mode]
def has_compute_pattern(self, compute_pattern: ComputePattern):
return compute_pattern in self._allowed_patterns
@ -37,15 +37,15 @@ class ColoModule(object):
assert self.has_compute_pattern(compute_pattern)
return self._allowed_patterns[compute_pattern]
def has_compute_pattern_with_label(self, compute_pattern: ComputePattern, label='default'):
return compute_pattern in self._allowed_patterns and label in self._allowed_patterns[compute_pattern]
def has_compute_pattern_with_mode(self, compute_pattern: ComputePattern, mode='default'):
return compute_pattern in self._allowed_patterns and mode in self._allowed_patterns[compute_pattern]
def get_dist_specs_with_label(self, compute_pattern: ComputePattern, label='default'):
assert self.has_compute_pattern_with_label(compute_pattern, label)
return self._allowed_patterns[compute_pattern][label]
def get_dist_specs_with_mode(self, compute_pattern: ComputePattern, mode='default'):
assert self.has_compute_pattern_with_mode(compute_pattern, mode)
return self._allowed_patterns[compute_pattern][mode]
def get_param_names(self):
return self._shard_params
def register(self):
def register(self, compute_pattern):
raise NotImplementedError

View File

@ -0,0 +1,36 @@
from .colo_module import ColoModule
from colossalai.tensor import ComputePattern, distspec
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
class ColoEmbedding(ColoModule):
def __init__(self):
super(ColoEmbedding, self).__init__()
self._register_shard_params(['weight'])
def register(self, compute_pattern):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
def _set_TP1D(self):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
},
mode='row',
)
# TP1D Col Linear
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
},
mode='col',
)
self._set_default(compute_pattern=_compute_pattern, target_mode='row')

View File

@ -7,12 +7,11 @@ class ColoLinear(ColoModule):
def __init__(self):
super(ColoLinear, self).__init__()
self._register_shard_params(['weight', 'bias'])
self._register = False
def register(self):
if self._register == False:
self._set_TP1D()
self._register = True
def register(self, compute_pattern):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
def _set_TP1D(self):
# TP1D Row Linear
@ -23,7 +22,7 @@ class ColoLinear(ColoModule):
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': None
},
label='row',
mode='row',
)
# TP1D Col Linear
@ -33,7 +32,7 @@ class ColoLinear(ColoModule):
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)])
},
label='col',
mode='col',
)
self._set_default(compute_pattern=_compute_pattern, target_label='row')
self._set_default(compute_pattern=_compute_pattern, target_mode='row')

View File

@ -1,7 +1,7 @@
from .utils import InsertPostInitMethodToModuleSubClasses
import torch
from colossalai.tensor import ColoTensor, ColoParameter, register_colo_module, init_colo_module, \
ColoLinear
ColoLinear, ColoEmbedding
import types
from torch import nn
@ -137,7 +137,12 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
torch.nn.Module.__setattr__ = _setattr_with_colotensor
torch.nn.Module.register_parameter = _register_parameter_with_colotensor
torch.nn.Module.get_parameter = _get_parameter_with_colotensor
self._register_colo_modules()
def _register_colo_modules(self):
register_colo_module(torch.nn.Linear, ColoLinear())
register_colo_module(torch.nn.Embedding, ColoEmbedding())
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
"""
@ -179,5 +184,6 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
replaced_tensors[param] = colo_param
delattr(submodule, param_name)
setattr(submodule, param_name, colo_param)
colo_param.shared_param_modules.append(submodule)
ColoModulize(module)

View File

@ -15,21 +15,21 @@ import torch.nn.functional as F
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager, register_colo_module, init_colo_module, ColoLinear
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager, register_colo_module, init_colo_module, check_colo_module
from _utils import tensor_equal, tensor_shard_equal, set_seed
from tests.components_to_test.registry import non_distributed_component_funcs
def run_simplenet_with_spec(label):
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
def run_model_with_spec(mode, model_name):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
model = model_builder(checkpoint=False)
if rank == 0:
model_seq = model_builder(checkpoint=True)
model_seq = model_builder(checkpoint=False)
model_seq = model_seq.cuda()
# Make two models have the same init params
@ -37,7 +37,19 @@ def run_simplenet_with_spec(label):
p2.data.copy_(p1.data)
parallel_action = ParallelAction(ComputePattern.TP1D)
init_colo_module(model, parallel_action, recursive=True, label=label)
# Not all layers in Bert can be mod by 4.
# e.g. row shard for all layers is invalid because the first dim of some layer is the classification type size 2.
if 'bert' == model_name:
if 'col' == mode:
init_colo_module(model.bert.embeddings, parallel_action, recursive=True, mode=mode)
init_colo_module(model.bert.encoder, parallel_action, recursive=True, mode=mode)
init_colo_module(model.classifier, parallel_action, recursive=True, mode='row')
elif 'row' == mode:
init_colo_module(model.bert.embeddings, parallel_action, recursive=True, mode='col')
init_colo_module(model.bert.encoder, parallel_action, recursive=True, mode=mode)
init_colo_module(model.classifier, parallel_action, recursive=True, mode=mode)
elif 'simple_net' == model_name:
init_colo_module(model, parallel_action, recursive=True, mode=mode)
model = model.cuda()
for i, (data, label) in enumerate(train_dataloader):
@ -91,14 +103,14 @@ def run_simplenet_with_spec(label):
if i > 3:
break
def run_linear_with_spec(label):
def run_linear_with_spec(mode):
with ColoInitContext(device=get_current_device()):
model = torch.nn.Linear(4, 8)
model_handy = copy(model)
parallel_action = ParallelAction(ComputePattern.TP1D)
init_colo_module(model, parallel_action, recursive=True, label=label)
init_colo_module(model, parallel_action, recursive=True, mode=mode)
x = torch.rand(2, 4).cuda()
out = model(x)
@ -110,28 +122,79 @@ def run_linear_with_spec(label):
assert tensor_shard_equal(model.weight.grad, model_handy.weight.grad)
assert tensor_shard_equal(model.bias.grad, model_handy.bias.grad)
def run_check_shared_param():
from transformers import BertForMaskedLM, BertConfig
hidden_dim = 8
num_head = 4
sequence_length = 12
num_layer = 2
vocab_size = 24
def run_dist(rank, world_size, port, func):
config = BertConfig(vocab_size=vocab_size,
hidden_size=hidden_dim,
intermediate_size=hidden_dim * 4,
num_attention_heads=num_head,
max_position_embeddings=sequence_length,
num_hidden_layers=num_layer,
hidden_dropout_prob=0.,
attention_probs_dropout_prob=0.)
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
model = BertForMaskedLM(config)
model = model.cuda()
parallel_action = ParallelAction(ComputePattern.TP1D)
# model.cls.predictions.decoder and model.cls.predictions share the bias, so they should have the same spec
assert len(model.cls.predictions.decoder.bias.shared_param_modules) == 2
# They are all Linear, so both row is allowed. This should pass check.
init_colo_module(model, parallel_action, recursive=True, mode='row')
# This should be detected by check because you can not set weight as row while set bias as col.
col_spec = TensorSpec(
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
ParallelAction(ComputePattern.TP1D))
model.cls.predictions.bias.set_spec(col_spec)
try:
check_colo_module(model.cls.predictions.decoder, recursive=False)
except Exception as e:
assert 'incorrectly sharded' in str(e)
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
func('col')
func('row')
func('default')
run_linear_with_spec('col')
run_linear_with_spec('row')
def run_dist_model(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
for model_name in ['simple_net', 'bert']:
run_model_with_spec('col', model_name)
run_model_with_spec('row', model_name)
def run_dist_check(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_check_shared_param()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_module_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), func=run_linear_with_spec)
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_module_simplenet(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), func=run_simplenet_with_spec)
def test_module_model(world_size):
run_func = partial(run_dist_model, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_module_check(world_size):
run_func = partial(run_dist_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_module_simplenet(4)
test_module_check(2)