mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] fix init context (#931)
* change torch.Parameter to ColoParameter * fix post assignment for init context * polish * polishpull/935/head
parent
dfc88b85ea
commit
d73c2b1d79
|
@ -6,6 +6,21 @@ import types
|
|||
from torch import nn
|
||||
from typing import Iterator, Tuple, Union, Optional
|
||||
|
||||
# find named_params includes replica
|
||||
def _named_params_with_replica(
|
||||
module: nn.Module,
|
||||
prefix: str = '',
|
||||
recurse: bool = True,
|
||||
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
|
||||
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
|
||||
|
||||
for mod_prefix, mod in modules:
|
||||
for name, val in mod._parameters.items():
|
||||
if val is None:
|
||||
continue
|
||||
name = mod_prefix + ('.' if mod_prefix else '') + name
|
||||
yield name, val
|
||||
|
||||
# Adapted from torch.nn.module.Module.register_param
|
||||
def _register_parameter_with_colotensor(self, name: str, param):
|
||||
if '_parameters' not in self.__dict__:
|
||||
|
@ -139,21 +154,36 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|||
return
|
||||
|
||||
name_list = []
|
||||
for name, param in module.named_parameters(recurse=False):
|
||||
for name, param in _named_params_with_replica(module):
|
||||
if isinstance(param, ColoTensor):
|
||||
continue
|
||||
name_list.append((name, param))
|
||||
|
||||
save_torch_payload = True if not self._lazy_memory_allocate else False
|
||||
for name, param in name_list:
|
||||
delattr(module, name)
|
||||
split = name.rfind('.')
|
||||
if split >= 0: # param in submodule
|
||||
module_name = name[:split]
|
||||
param_name = name[split+1:]
|
||||
else:
|
||||
module_name = '' # param in current module
|
||||
param_name = name
|
||||
name_list.append((module_name, param_name))
|
||||
|
||||
# detaching tensor is necessary for optimizers.
|
||||
requires_grad = param.requires_grad
|
||||
tensor_detached = param.to(self._device).detach()
|
||||
tensor_detached.requires_grad = requires_grad
|
||||
replaced_tensors = dict() # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference
|
||||
for module_name, param_name in name_list:
|
||||
submodule = module.get_submodule(module_name)
|
||||
param = submodule.get_parameter(param_name)
|
||||
if param in replaced_tensors:
|
||||
colo_param = replaced_tensors[param]
|
||||
else:
|
||||
save_torch_payload = True if not self._lazy_memory_allocate else False
|
||||
# detaching tensor is necessary for optimizers.
|
||||
requires_grad = param.requires_grad
|
||||
tensor_detached = param.to(self._device).detach()
|
||||
tensor_detached.requires_grad = requires_grad
|
||||
|
||||
colo_param = ColoParameter.init_from_torch_tensor(tensor=tensor_detached, save_payload=save_torch_payload)
|
||||
setattr(module, name, colo_param)
|
||||
colo_param = ColoParameter.init_from_torch_tensor(tensor=tensor_detached, save_payload=save_torch_payload)
|
||||
# add mapping record
|
||||
replaced_tensors[param] = colo_param
|
||||
delattr(submodule, param_name)
|
||||
setattr(submodule, param_name, colo_param)
|
||||
|
||||
ColoModulize(module)
|
|
@ -370,16 +370,22 @@ def _run_pretrain_load():
|
|||
|
||||
dict_pretrained = {}
|
||||
dict_col = {}
|
||||
c_ref = 0
|
||||
for name, param in model_pretrained.named_parameters():
|
||||
dict_pretrained[name] = param
|
||||
c_ref += 1
|
||||
c1 = 0
|
||||
c2 = 0
|
||||
for name, param in model.colo_named_parameters():
|
||||
if isinstance(param, ColoParameter):
|
||||
c1 = c1 + 1
|
||||
c1 += 1
|
||||
else:
|
||||
c2 = c2 + 1
|
||||
c2 +=1
|
||||
dict_col[name] = param
|
||||
assert c_ref == c1
|
||||
assert c2 == 0
|
||||
if model_pretrained.cls.predictions.decoder.bias is model_pretrained.cls.predictions.bias:
|
||||
assert model.cls.predictions.decoder.bias is model.cls.predictions.bias
|
||||
|
||||
for name, param in dict_pretrained.items():
|
||||
check_equal(param, dict_col[name])
|
||||
|
@ -423,5 +429,4 @@ if __name__ == '__main__':
|
|||
# test_model_parameters()
|
||||
# test_colo_optimizer()
|
||||
# test_model()
|
||||
# _test_pretrain_load(4)
|
||||
_run_pretrain_load()
|
||||
_test_pretrain_load(4)
|
||||
|
|
Loading…
Reference in New Issue