|
|
|
@ -6,6 +6,21 @@ import types
|
|
|
|
|
from torch import nn |
|
|
|
|
from typing import Iterator, Tuple, Union, Optional |
|
|
|
|
|
|
|
|
|
# find named_params includes replica |
|
|
|
|
def _named_params_with_replica( |
|
|
|
|
module: nn.Module, |
|
|
|
|
prefix: str = '', |
|
|
|
|
recurse: bool = True, |
|
|
|
|
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]: |
|
|
|
|
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)] |
|
|
|
|
|
|
|
|
|
for mod_prefix, mod in modules: |
|
|
|
|
for name, val in mod._parameters.items(): |
|
|
|
|
if val is None: |
|
|
|
|
continue |
|
|
|
|
name = mod_prefix + ('.' if mod_prefix else '') + name |
|
|
|
|
yield name, val |
|
|
|
|
|
|
|
|
|
# Adapted from torch.nn.module.Module.register_param |
|
|
|
|
def _register_parameter_with_colotensor(self, name: str, param): |
|
|
|
|
if '_parameters' not in self.__dict__: |
|
|
|
@ -139,21 +154,36 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
name_list = [] |
|
|
|
|
for name, param in module.named_parameters(recurse=False): |
|
|
|
|
for name, param in _named_params_with_replica(module): |
|
|
|
|
if isinstance(param, ColoTensor): |
|
|
|
|
continue |
|
|
|
|
name_list.append((name, param)) |
|
|
|
|
|
|
|
|
|
save_torch_payload = True if not self._lazy_memory_allocate else False |
|
|
|
|
for name, param in name_list: |
|
|
|
|
delattr(module, name) |
|
|
|
|
|
|
|
|
|
# detaching tensor is necessary for optimizers. |
|
|
|
|
requires_grad = param.requires_grad |
|
|
|
|
tensor_detached = param.to(self._device).detach() |
|
|
|
|
tensor_detached.requires_grad = requires_grad |
|
|
|
|
|
|
|
|
|
colo_param = ColoParameter.init_from_torch_tensor(tensor=tensor_detached, save_payload=save_torch_payload) |
|
|
|
|
setattr(module, name, colo_param) |
|
|
|
|
split = name.rfind('.') |
|
|
|
|
if split >= 0: # param in submodule |
|
|
|
|
module_name = name[:split] |
|
|
|
|
param_name = name[split+1:] |
|
|
|
|
else: |
|
|
|
|
module_name = '' # param in current module |
|
|
|
|
param_name = name |
|
|
|
|
name_list.append((module_name, param_name)) |
|
|
|
|
|
|
|
|
|
replaced_tensors = dict() # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference |
|
|
|
|
for module_name, param_name in name_list: |
|
|
|
|
submodule = module.get_submodule(module_name) |
|
|
|
|
param = submodule.get_parameter(param_name) |
|
|
|
|
if param in replaced_tensors: |
|
|
|
|
colo_param = replaced_tensors[param] |
|
|
|
|
else: |
|
|
|
|
save_torch_payload = True if not self._lazy_memory_allocate else False |
|
|
|
|
# detaching tensor is necessary for optimizers. |
|
|
|
|
requires_grad = param.requires_grad |
|
|
|
|
tensor_detached = param.to(self._device).detach() |
|
|
|
|
tensor_detached.requires_grad = requires_grad |
|
|
|
|
|
|
|
|
|
colo_param = ColoParameter.init_from_torch_tensor(tensor=tensor_detached, save_payload=save_torch_payload) |
|
|
|
|
# add mapping record |
|
|
|
|
replaced_tensors[param] = colo_param |
|
|
|
|
delattr(submodule, param_name) |
|
|
|
|
setattr(submodule, param_name, colo_param) |
|
|
|
|
|
|
|
|
|
ColoModulize(module) |