|
|
|
import tempfile
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
from torch.optim import Adam
|
|
|
|
from torchvision.models import resnet18
|
|
|
|
|
|
|
|
from colossalai.checkpoint_io import GeneralCheckpointIO
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
|
|
from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize
|
|
|
|
|
|
|
|
# ========
|
|
|
|
# Note:
|
|
|
|
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
|
|
|
|
# 2. we will test on both sharded and unsharded checkpoints
|
|
|
|
# 3. implement sharded checkpoint and test it
|
|
|
|
# ========
|
|
|
|
|
|
|
|
|
|
|
|
@clear_cache_before_run()
|
|
|
|
@parameterize("use_safetensors", [True, False])
|
|
|
|
def test_unsharded_checkpoint(use_safetensors: bool):
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(model.parameters(), lr=0.001)
|
|
|
|
lr_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=10)
|
|
|
|
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
lr_scheduler.step()
|
|
|
|
|
|
|
|
# create a temp file for checkpoint
|
|
|
|
if use_safetensors:
|
|
|
|
suffix = ".safetensors"
|
|
|
|
else:
|
|
|
|
suffix = ".bin"
|
|
|
|
model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix)
|
|
|
|
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
lr_scheduler_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
|
|
|
|
# save the model, optimizer, lr_scheduler
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
ckpt_io.save_lr_scheduler(lr_scheduler, lr_scheduler_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
|
|
|
new_lr_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=10)
|
|
|
|
|
|
|
|
# load the model, optimizer, lr_scheduler
|
|
|
|
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
ckpt_io.load_lr_scheduler(new_lr_scheduler, lr_scheduler_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
|
|
|
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_safetensors", [True, False])
|
|
|
|
def test_sharded_model_checkpoint(use_safetensors: bool):
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(model.parameters(), lr=0.001)
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# create a temp file for checkpoint
|
|
|
|
if use_safetensors:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
|
|
|
|
model_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
|
|
|
|
# save the model and optimizer
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
|
|
|
|
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=use_safetensors)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name, shard=False)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
|
|
|
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
|
|
|
|
|
|
|
|
|
|
|
|
def test_sharded_optimizer_checkpoint():
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# create temp directories for checkpoint
|
|
|
|
model_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
optimizer_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
|
|
|
|
# save the model and optimizer
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
|
|
|
|
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name))
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
|
|
|
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
|
|
|
|
|
|
|
|
# continue running fwd and bwd
|
|
|
|
for _ in range(5):
|
|
|
|
y = new_model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
new_optimizer.step()
|
|
|
|
|
|
|
|
# save the newly got optimizer
|
|
|
|
ckpt_io.save_model(new_model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False)
|
|
|
|
ckpt_io.save_optimizer(new_optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10)
|
|
|
|
|
|
|
|
# create another new model
|
|
|
|
new_new_model = resnet18()
|
|
|
|
new_new_optimizer = Adam(new_new_model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
ckpt_io.load_model(new_new_model, str(model_ckpt_dir.name), strict=True)
|
|
|
|
ckpt_io.load_optimizer(new_new_optimizer, str(optimizer_ckpt_dir.name))
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
check_state_dict_equal(new_model.state_dict(), new_new_model.state_dict())
|
|
|
|
check_state_dict_equal(new_optimizer.state_dict(), new_new_optimizer.state_dict())
|
|
|
|
|
|
|
|
|
|
|
|
def test_sharded_optimizer_multiple_param_groups():
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(
|
|
|
|
[{"params": model.layer1.parameters()}, {"params": model.layer2.parameters(), "lr": 0.002}], lr=0.001
|
|
|
|
)
|
|
|
|
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# create temp directories for checkpoint
|
|
|
|
model_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
optimizer_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
|
|
|
|
# save the model and optimizer
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
|
|
|
|
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(
|
|
|
|
[{"params": new_model.layer1.parameters()}, {"params": new_model.layer2.parameters(), "lr": 0.002}], lr=0.001
|
|
|
|
)
|
|
|
|
|
|
|
|
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name))
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
|
|
|
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
|