You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_checkpoint_io/test_general_checkpoint_io.py

205 lines
7.0 KiB

import tempfile
import pytest
import torch
from torch.optim import Adam
from torchvision.models import resnet18
from colossalai.checkpoint_io import GeneralCheckpointIO
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize
[booster] gemini plugin support shard checkpoint (#3610) * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin add shard checkpoint save/load * gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint * [API Refactoring]gemini plugin support shard checkpoint --------- Co-authored-by: luchen <luchen@luchendeMBP.lan> Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
2 years ago
# ========
# Note:
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
# 2. we will test on both sharded and unsharded checkpoints
# 3. implement sharded checkpoint and test it
# ========
@clear_cache_before_run()
@parameterize("use_safetensors", [True, False])
def test_unsharded_checkpoint(use_safetensors: bool):
# create a model and optimizer
model = resnet18()
optimizer = Adam(model.parameters(), lr=0.001)
lr_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=10)
# create test data sample
x = torch.randn(1, 3, 224, 224)
# run fwd and bwd
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
lr_scheduler.step()
# create a temp file for checkpoint
if use_safetensors:
suffix = ".safetensors"
else:
suffix = ".bin"
model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix)
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
lr_scheduler_ckpt_tempfile = tempfile.NamedTemporaryFile()
# save the model, optimizer, lr_scheduler
ckpt_io = GeneralCheckpointIO()
ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors)
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
ckpt_io.save_lr_scheduler(lr_scheduler, lr_scheduler_ckpt_tempfile.name)
# create new model
new_model = resnet18()
new_optimizer = Adam(new_model.parameters(), lr=0.001)
new_lr_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=10)
# load the model, optimizer, lr_scheduler
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
ckpt_io.load_lr_scheduler(new_lr_scheduler, lr_scheduler_ckpt_tempfile.name)
# check for model and optimizer state dict recursively
check_state_dict_equal(model.state_dict(), new_model.state_dict())
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
@pytest.mark.parametrize("use_safetensors", [True, False])
def test_sharded_model_checkpoint(use_safetensors: bool):
# create a model and optimizer
model = resnet18()
optimizer = Adam(model.parameters(), lr=0.001)
# create test data sample
x = torch.randn(1, 3, 224, 224)
# run fwd and bwd
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
# create a temp file for checkpoint
if use_safetensors:
pass
else:
pass
model_ckpt_dir = tempfile.TemporaryDirectory()
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
# save the model and optimizer
ckpt_io = GeneralCheckpointIO()
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=use_safetensors)
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name, shard=False)
# create new model
new_model = resnet18()
new_optimizer = Adam(new_model.parameters(), lr=0.001)
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
# check for model and optimizer state dict recursively
check_state_dict_equal(model.state_dict(), new_model.state_dict())
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
def test_sharded_optimizer_checkpoint():
# create a model and optimizer
model = resnet18()
optimizer = Adam(model.parameters(), lr=0.001)
# create test data sample
x = torch.randn(1, 3, 224, 224)
# run fwd and bwd
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
# create temp directories for checkpoint
model_ckpt_dir = tempfile.TemporaryDirectory()
optimizer_ckpt_dir = tempfile.TemporaryDirectory()
# save the model and optimizer
ckpt_io = GeneralCheckpointIO()
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False)
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10)
# create new model
new_model = resnet18()
new_optimizer = Adam(new_model.parameters(), lr=0.001)
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name))
# check for model and optimizer state dict recursively
check_state_dict_equal(model.state_dict(), new_model.state_dict())
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
# continue running fwd and bwd
for _ in range(5):
y = new_model(x)
loss = y.sum()
loss.backward()
new_optimizer.step()
# save the newly got optimizer
ckpt_io.save_model(new_model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False)
ckpt_io.save_optimizer(new_optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10)
# create another new model
new_new_model = resnet18()
new_new_optimizer = Adam(new_new_model.parameters(), lr=0.001)
ckpt_io.load_model(new_new_model, str(model_ckpt_dir.name), strict=True)
ckpt_io.load_optimizer(new_new_optimizer, str(optimizer_ckpt_dir.name))
# check for model and optimizer state dict recursively
check_state_dict_equal(new_model.state_dict(), new_new_model.state_dict())
check_state_dict_equal(new_optimizer.state_dict(), new_new_optimizer.state_dict())
def test_sharded_optimizer_multiple_param_groups():
# create a model and optimizer
model = resnet18()
optimizer = Adam(
[{"params": model.layer1.parameters()}, {"params": model.layer2.parameters(), "lr": 0.002}], lr=0.001
)
# create test data sample
x = torch.randn(1, 3, 224, 224)
# run fwd and bwd
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
# create temp directories for checkpoint
model_ckpt_dir = tempfile.TemporaryDirectory()
optimizer_ckpt_dir = tempfile.TemporaryDirectory()
# save the model and optimizer
ckpt_io = GeneralCheckpointIO()
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False)
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10)
# create new model
new_model = resnet18()
new_optimizer = Adam(
[{"params": new_model.layer1.parameters()}, {"params": new_model.layer2.parameters(), "lr": 0.002}], lr=0.001
)
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name))
# check for model and optimizer state dict recursively
check_state_dict_equal(model.state_dict(), new_model.state_dict())
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())