mirror of https://github.com/hpcaitech/ColossalAI
[api] implemented the checkpoint io module (#3205)
* [api] implemented the checkpoint io module * polish code * polish codepull/3213/head
parent
f8289d4221
commit
cd142fbefa
|
@ -0,0 +1,4 @@
|
|||
from .checkpoint_io_base import CheckpointIO, ShardCheckpointIndexFile
|
||||
from .general_checkpoint_io import GeneralCheckpointIO
|
||||
|
||||
__all__ = ['CheckpointIO', 'ShardCheckpointIndexFile', 'GeneralCheckpointIO']
|
|
@ -0,0 +1,374 @@
|
|||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
|
||||
__all__ = ['CheckpointIO', 'ShardCheckpointIndexFile']
|
||||
|
||||
|
||||
class CheckpointIO(ABC):
|
||||
"""
|
||||
CheckpointIO is the base class for all checkpoint IO classes. It defines the interface for checkpoint IO.
|
||||
|
||||
|
||||
Examples:
|
||||
>>> from colossalai.checkpoint_io import GeneralCheckpointIO
|
||||
>>> checkpoint_io = CheckpointIO()
|
||||
>>>
|
||||
>>> # load model from checkpoint
|
||||
>>> model = checkpoint_io.load_model(model, 'model.pt')
|
||||
>>>
|
||||
>>> # save model to checkpoint
|
||||
>>> checkpoint_io.save_model(model, 'model.pt')
|
||||
>>>
|
||||
>>> # save model to sharded checkpoints
|
||||
>>> checkpoint_io.save_model(model, './checkpoints/', shard=True)
|
||||
>>>
|
||||
>>> # load model from sharded checkpoints
|
||||
>>> model = checkpoint_io.load_model(model, './checkpoints/')
|
||||
>>>
|
||||
>>> # load optimizer from checkpoint
|
||||
>>> optimizer = checkpoint_io.load_optimizer(optimizer, 'optimizer.pt')
|
||||
>>>
|
||||
>>> # save optimizer to checkpoint
|
||||
>>> checkpoint_io.save_optimizer(optimizer, 'optimizer.pt')
|
||||
|
||||
"""
|
||||
|
||||
# ======================================
|
||||
# Abstract methods for implementation
|
||||
# ======================================
|
||||
|
||||
@abstractmethod
|
||||
def load_model(self, model: nn.Module, checkpoint: str, strict: bool = True):
|
||||
"""
|
||||
Load model from checkpoint.
|
||||
|
||||
Args:
|
||||
model (nn.Module): model to be loaded.
|
||||
checkpoint (str): checkpoint path. This value is made compatiblity with the model checkpoints in the
|
||||
mainstream model zoos such as Hugging Face and TIMM. The checkpoint path can be:
|
||||
1. a file path, e.g. 'model.pt'
|
||||
2. a path to a json file which defines the index to the sharded checkpoint
|
||||
3. a path to a folder containing a unique .index.json file for sharded checkpoint
|
||||
strict (bool): whether to strictly enforce that the param name in
|
||||
the checkpoint match the keys returned by this module's.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_model(self,
|
||||
model: nn.Module,
|
||||
checkpoint: str,
|
||||
prefix: str = None,
|
||||
shard: bool = False,
|
||||
size_per_shard: int = 1024):
|
||||
"""
|
||||
Save model to checkpoint.
|
||||
|
||||
Examples:
|
||||
>>> from colossalai.checkpoint_io import GeneralCheckpointIO
|
||||
>>> checkpoint_io = CheckpointIO()
|
||||
>>>
|
||||
>>> # save model to a single file
|
||||
>>> save_model(model, 'model.pt')
|
||||
>>>
|
||||
>>> # save model to a sharded checkpoint
|
||||
>>> save_model(model, './checkpoints/', shard=True)
|
||||
|
||||
Args:
|
||||
model (nn.Module): model to be saved.
|
||||
checkpoint: checkpoint path. The checkpoint path can be :
|
||||
1. a file path, e.g. 'model.pt'
|
||||
2. a directory path to save the sharded checkpoint, e.g. './checkpoints/' when shard = True.
|
||||
shard: whether to shard the checkpoint. Default: False. If set to True, the checkpoint will be sharded into
|
||||
multiple files. The model shards will be specificed by a `model.index.json` file. When shard = True, please ensure
|
||||
that the checkpoint path is a directory path instead of a file path.
|
||||
size_per_shard (int): size per shard in MB. Default: 1024. This value is only used when shard is set to True.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
|
||||
"""
|
||||
Load optimizer from checkpoint.
|
||||
|
||||
Args:
|
||||
optimizer (Optimizer): optimizer to be loaded.
|
||||
checkpoint (str): checkpoint path. This value is made compatiblity with the model checkpoints in the
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_optimizer(self, optimizer: Optimizer, checkpoint: str, shard: bool = False, size_per_shard: int = 1024):
|
||||
"""
|
||||
Save optimizer to checkpoint.
|
||||
|
||||
Args:
|
||||
optimizer (Optimizer): optimizer to be saved.
|
||||
checkpoint: checkpoint path. The checkpoint path can be :
|
||||
1. a file path, e.g. 'model.pt'
|
||||
2. a path to a json file which defines the index to the sharded checkpoint for the optimizer
|
||||
3. a path to a folder containing a unique .index.json file for sharded checkpoint
|
||||
"""
|
||||
pass
|
||||
|
||||
# ============================================
|
||||
# methods for loading and saving lr scheduler
|
||||
# as this is quite standard, there is no need
|
||||
# to make them abstract
|
||||
# ============================================
|
||||
|
||||
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
||||
"""
|
||||
Save lr scheduler to checkpoint.
|
||||
|
||||
Args:
|
||||
lr_scheduler (LRScheduler): lr scheduler to be saved.
|
||||
checkpoint: checkpoint path. The checkpoint path can only be a file path.
|
||||
"""
|
||||
torch.save(lr_scheduler.state_dict(), checkpoint)
|
||||
|
||||
def load_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
||||
"""
|
||||
Load lr scheduler from checkpoint.
|
||||
|
||||
Args:
|
||||
lr_scheduler (LRScheduler): lr scheduler to be loaded.
|
||||
checkpoint (str): the path for a single checkpoint file.
|
||||
"""
|
||||
state_dict = torch.load(checkpoint)
|
||||
lr_scheduler.load_state_dict(state_dict)
|
||||
|
||||
# ========================================
|
||||
# Helper functions for loading state dict
|
||||
# ========================================
|
||||
|
||||
def get_sharded_checkpoint_index_file(self, checkpoint_path: Path):
|
||||
"""
|
||||
Get the index file path for a sharded checkpoint.
|
||||
|
||||
Args:
|
||||
checkpoint_path (Path): path to the checkpoint.
|
||||
|
||||
Returns:
|
||||
Path: path to the index file.
|
||||
"""
|
||||
if checkpoint_path.is_file():
|
||||
# check if it is .index.json
|
||||
if checkpoint_path.name.endswith('.index.json'):
|
||||
return checkpoint_path
|
||||
else:
|
||||
raise ValueError(f'Invalid checkpoint path: {checkpoint_path}. ')
|
||||
elif checkpoint_path.is_dir():
|
||||
# check if there is only one a file ending with .index.json in this directory
|
||||
index_files = list(checkpoint_path.glob('*.index.json'))
|
||||
if len(index_files) == 1:
|
||||
return index_files[0]
|
||||
else:
|
||||
raise ValueError(f'Found {len(index_files)} index files in {checkpoint_path}. ')
|
||||
|
||||
def is_sharded_checkpoint(self, checkpoint_path: Path):
|
||||
"""
|
||||
Check whether the checkpoint is sharded.
|
||||
|
||||
Args:
|
||||
checkpoint (str): checkpoint path.
|
||||
|
||||
Returns:
|
||||
bool: whether the checkpoint is sharded.
|
||||
"""
|
||||
if checkpoint_path.is_file():
|
||||
# check if it is .index.json
|
||||
if checkpoint_path.name.endswith('.index.json'):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
elif checkpoint_path.is_dir():
|
||||
# check if there is only one a file ending with .index.json in this directory
|
||||
index_files = list(checkpoint_path.glob('*.index.json'))
|
||||
if len(index_files) == 1:
|
||||
return True
|
||||
else:
|
||||
raise ValueError(f'Found {len(index_files)} index files in {checkpoint_path}. ')
|
||||
|
||||
def get_checkpoint_shard_filenames(self, index_file_path: Path):
|
||||
"""
|
||||
Get checkpoint shard filenames from a json file.
|
||||
|
||||
Args:
|
||||
index_file_path (Path): path to the json file.
|
||||
|
||||
Returns:
|
||||
list: checkpoint shard filenames.
|
||||
"""
|
||||
with open(str(index_file_path), 'r') as f:
|
||||
shard_filenames = json.load(f)
|
||||
|
||||
if "weight_map" in index:
|
||||
index = index["weight_map"]
|
||||
|
||||
checkpoint_root_path = index_file_path.absolute().parent
|
||||
|
||||
# read the checkpoint file list from the json file and get a list of unique file names
|
||||
checkpoint_files = sorted(list(set(index.values())))
|
||||
|
||||
# get the absolute paths for all checkpoint files
|
||||
checkpoint_files = [checkpoint_root_path.joinpath(f) for f in checkpoint_files]
|
||||
return shard_filenames
|
||||
|
||||
def load_safetensors_state_dict(self, *args, **kwargs):
|
||||
"""
|
||||
Load safetensors state dict from checkpoint.
|
||||
"""
|
||||
# TODO(FrankLeeeee): support huggingface safetensors
|
||||
raise NotImplementedError("This method is not implemented to support safe tensors")
|
||||
|
||||
def load_state_dict(self, checkpoint_file_path: Path):
|
||||
"""
|
||||
Load state dict from checkpoint.
|
||||
|
||||
Args:
|
||||
checkpoint_file_path (Path): path to the checkpoint file.
|
||||
|
||||
Returns:
|
||||
dict: state dict.
|
||||
"""
|
||||
return torch.load(str(checkpoint_file_path))
|
||||
|
||||
# ======================================
|
||||
# Helper functions for saving state dict
|
||||
# ======================================
|
||||
|
||||
def save_safetensors_state_dict(self, *args, **kwargs):
|
||||
"""
|
||||
Save safetensors state dict to checkpoint.
|
||||
"""
|
||||
# TODO(FrankLeeeee): support huggingface safetensors
|
||||
raise NotImplementedError("This method is not implemented to support safe tensors")
|
||||
|
||||
def generate_checkpoint_shard_file_name(self, index: int, total_number: int, prefix: str = None):
|
||||
"""
|
||||
Generate checkpoint shard file name.
|
||||
|
||||
Args:
|
||||
index (int): index of the shard.
|
||||
total_number (int): total number of shards.
|
||||
prefix (str): prefix of the shard file name. Default: None.
|
||||
"""
|
||||
if prefix is None:
|
||||
return f"{index}-of-{total_number}.bin"
|
||||
else:
|
||||
return f"{prefix}-{index}-of-{total_number}.bin"
|
||||
|
||||
def save_checkpoint(self, state_dict: dict, checkpoint_file_path: Path):
|
||||
"""
|
||||
Save state dict to checkpoint.
|
||||
|
||||
Args:
|
||||
state_dict (dict): state dict.
|
||||
checkpoint_file_path (Path): path to the checkpoint file.
|
||||
"""
|
||||
torch.save(state_dict, str(checkpoint_file_path))
|
||||
|
||||
def save_state_dict_as_shard(self, state_dict: dict, index: int, total_number: int, prefix: str,
|
||||
checkpoint_path: Path):
|
||||
"""
|
||||
Save state dict as shard.
|
||||
|
||||
Args:
|
||||
state_dict (dict): state dict.
|
||||
checkpoint_path (Path): path to the checkpoint file.
|
||||
"""
|
||||
# generate the shard name
|
||||
shard_file_name = self.generate_checkpoint_shard_file_name(index, total_number, prefix)
|
||||
shard_file_path = checkpoint_path.joinpath(shard_file_name)
|
||||
|
||||
# save the shard
|
||||
self.save_checkpoint(state_dict, shard_file_path)
|
||||
|
||||
def calculate_param_size(self, param: torch.Tensor):
|
||||
"""
|
||||
Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size.
|
||||
If so, a new shard should be created.
|
||||
|
||||
ArgsL
|
||||
param (torch.Tensor): parameter tensor.
|
||||
"""
|
||||
# TODO(FrankLeeeee): check if this tensor is a DTensor, compute its global size if so
|
||||
return param.numel() * param.element_size() / 1024 / 1024
|
||||
|
||||
|
||||
class ShardCheckpointIndexFile:
|
||||
"""
|
||||
This class is a data structure to keep the content in the index.json file for sharded checkpoint.
|
||||
|
||||
Example:
|
||||
>>> index = ShardCheckpointIndexFile()
|
||||
>>> index.load('index.json')
|
||||
>>> index.append_metadata('model_type', 'bert')
|
||||
>>> index.append_weight_map('bert.embeddings.word_embeddings.weight', 'bert.embeddings.word_embeddings.weight-0-of-2.bin')
|
||||
>>> index.export('index.json')
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.metadata: dict = dict()
|
||||
self.weight_map: dict = dict()
|
||||
|
||||
def load(self, json_path: str):
|
||||
"""
|
||||
Load the index file from a json file.
|
||||
|
||||
Args:
|
||||
json_path (str): path to the json file.
|
||||
"""
|
||||
# load the json file
|
||||
with open(json_path, 'r') as f:
|
||||
index = json.load(f)
|
||||
|
||||
# assign attributes if exists
|
||||
if "metadata" in index:
|
||||
self.metadata = index["metadata"]
|
||||
if "weight_map" in index:
|
||||
self.weight_map = index["weight_map"]
|
||||
|
||||
def export(self, json_path: str):
|
||||
"""
|
||||
Export the index file to a json file.
|
||||
|
||||
Args:
|
||||
json_path (str): path to the json file.
|
||||
"""
|
||||
# create the index file
|
||||
index = dict()
|
||||
index["metadata"] = self.metadata
|
||||
index["weight_map"] = self.weight_map
|
||||
|
||||
# export the index file
|
||||
with open(json_path, 'w') as f:
|
||||
json.dump(index, f, indent=4)
|
||||
|
||||
def append_weight_map(self, param_name: str, shard_file: str):
|
||||
"""
|
||||
Append a weight map entry to the index file.
|
||||
|
||||
Args:
|
||||
param_name (str): name of the parameter.
|
||||
shard_file (str): name of the shard file.
|
||||
"""
|
||||
self.weight_map[param_name] = shard_file
|
||||
|
||||
def append_meta_data(self, name: str, val: Any):
|
||||
"""
|
||||
Append a metadata entry to the index file.
|
||||
|
||||
Args:
|
||||
name (str): name of the metadata.
|
||||
val (Any): value of the metadata.
|
||||
"""
|
||||
self.metadata[name] = val
|
|
@ -0,0 +1,66 @@
|
|||
from pathlib import Path
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from .checkpoint_io_base import CheckpointIO
|
||||
|
||||
__all__ = ['GeneralCheckpointIO']
|
||||
|
||||
|
||||
class GeneralCheckpointIO(CheckpointIO):
|
||||
|
||||
def load_model(self, model: nn.Module, checkpoint: str, strict: bool = True):
|
||||
checkpoint = Path(checkpoint)
|
||||
is_sharded = self.is_sharded_checkpoint(checkpoint)
|
||||
|
||||
if not is_sharded:
|
||||
checkpoint = self.load_state_dict(checkpoint)
|
||||
model.load_state_dict(checkpoint, strict=strict)
|
||||
else:
|
||||
# find the index file
|
||||
checkpoint_path = Path(checkpoint)
|
||||
index_file_path = self.get_sharded_checkpoint_index_file(checkpoint_path)
|
||||
|
||||
# iterate over the shard checkpoint files
|
||||
# and load each
|
||||
shard_files = self.get_checkpoint_shard_filenames(index_file_path)
|
||||
for shard_file in shard_files:
|
||||
shard_checkpoint = self.load_state_dict(shard_file)
|
||||
model.load_state_dict(shard_checkpoint, strict=strict)
|
||||
|
||||
return model
|
||||
|
||||
def save_model(self,
|
||||
model: nn.Module,
|
||||
checkpoint: str,
|
||||
prefix: str = None,
|
||||
shard: bool = False,
|
||||
size_per_shard: int = 1024):
|
||||
checkpoint = Path(checkpoint)
|
||||
if shard:
|
||||
# TODO(FrankLeeeee): implement checkpoint saving to sharded checkpoint
|
||||
raise NotImplementedError("Not implemented yet")
|
||||
else:
|
||||
self.save_checkpoint(model.state_dict(), checkpoint)
|
||||
|
||||
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
|
||||
checkpoint = Path(checkpoint)
|
||||
is_sharded = self.is_sharded_checkpoint(checkpoint)
|
||||
|
||||
if not is_sharded:
|
||||
checkpoint = self.load_state_dict(checkpoint)
|
||||
optimizer.load_state_dict(checkpoint)
|
||||
else:
|
||||
# TODO(FrankLeeeee): implement checkpoint loading from sharded checkpoint
|
||||
# This is not an urgent feature, so we can leave it for later
|
||||
# let's implement this when we test large-scale models
|
||||
pass
|
||||
return optimizer
|
||||
|
||||
def save_optimizer(self, optimizer: Optimizer, checkpoint: str, shard: bool = False, size_per_shard: int = 1024):
|
||||
if shard:
|
||||
# TODO(FrankLeeeee): implement checkpoint saving to sharded checkpoint
|
||||
pass
|
||||
else:
|
||||
self.save_checkpoint(optimizer.state_dict(), checkpoint)
|
|
@ -0,0 +1,70 @@
|
|||
import tempfile
|
||||
|
||||
import torch
|
||||
from torch.optim import Adam
|
||||
from torchvision.models import resnet18
|
||||
|
||||
from colossalai.checkpoint_io import GeneralCheckpointIO
|
||||
|
||||
# ========
|
||||
# Note:
|
||||
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
|
||||
# 2. we will test on both sharded and unsharded checkpoints
|
||||
# 3. TODO(FrankLeeeee): implement sharded checkpoint and test it
|
||||
# ========
|
||||
|
||||
|
||||
def test_unsharded_checkpoint():
|
||||
# create a model and optimizer
|
||||
model = resnet18()
|
||||
optimizer = Adam(model.parameters(), lr=0.001)
|
||||
|
||||
# create test data sample
|
||||
x = torch.randn(1, 3, 224, 224)
|
||||
|
||||
# run fwd and bwd
|
||||
y = model(x)
|
||||
loss = y.sum()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# create a temp file for checkpoint
|
||||
model_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||
|
||||
# save the model and optimizer
|
||||
ckpt_io = GeneralCheckpointIO()
|
||||
ckpt_io.save_model(model, model_ckpt_tempfile.name)
|
||||
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
||||
|
||||
# create new model
|
||||
new_model = resnet18()
|
||||
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
||||
|
||||
# load the model and optimizer
|
||||
new_model = ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
||||
new_optimizer = ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
||||
|
||||
# do recursive check for the optimizer state dict
|
||||
# if the value is a dict, compare its values
|
||||
# if the value is a list, comapre all elements one-by-one
|
||||
# if the value is a torch.Tensor, use torch.equal
|
||||
# otherwise use assertEqual
|
||||
def recursive_check(d1, d2):
|
||||
for k, v in d1.items():
|
||||
if isinstance(v, dict):
|
||||
recursive_check(v, d2[k])
|
||||
elif isinstance(v, list):
|
||||
for i in range(len(v)):
|
||||
if isinstance(v[i], torch.Tensor):
|
||||
assert torch.equal(v[i], d2[k][i])
|
||||
else:
|
||||
assert v[i] == d2[k][i]
|
||||
elif isinstance(v, torch.Tensor):
|
||||
assert torch.equal(v, d2[k])
|
||||
else:
|
||||
assert v == d2[k]
|
||||
|
||||
# check for model and optimizer state dict recursively
|
||||
recursive_check(model.state_dict(), new_model.state_dict())
|
||||
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
|
Loading…
Reference in New Issue