You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_checkpoint_io/test_general_checkpoint_io.py

78 lines
2.6 KiB

import tempfile
import pytest
import torch
from torch.optim import Adam
from torchvision.models import resnet18
from colossalai.checkpoint_io import GeneralCheckpointIO
# ========
# Note:
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
# 2. we will test on both sharded and unsharded checkpoints
# 3. TODO(FrankLeeeee): implement sharded checkpoint and test it
# ========
@pytest.mark.parametrize('use_safetensors', [True, False])
def test_unsharded_checkpoint(use_safetensors: bool):
# create a model and optimizer
model = resnet18()
optimizer = Adam(model.parameters(), lr=0.001)
# create test data sample
x = torch.randn(1, 3, 224, 224)
# run fwd and bwd
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
# create a temp file for checkpoint
if use_safetensors:
suffix = ".safetensors"
else:
suffix = ".bin"
model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix)
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
# save the model and optimizer
ckpt_io = GeneralCheckpointIO()
ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors)
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
# create new model
new_model = resnet18()
new_optimizer = Adam(new_model.parameters(), lr=0.001)
# load the model and optimizer
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
# do recursive check for the optimizer state dict
# if the value is a dict, compare its values
# if the value is a list, comapre all elements one-by-one
# if the value is a torch.Tensor, use torch.equal
# otherwise use assertEqual
def recursive_check(d1, d2):
for k, v in d1.items():
if isinstance(v, dict):
recursive_check(v, d2[k])
elif isinstance(v, list):
for i in range(len(v)):
if isinstance(v[i], torch.Tensor):
assert torch.equal(v[i], d2[k][i])
else:
assert v[i] == d2[k][i]
elif isinstance(v, torch.Tensor):
assert torch.equal(v, d2[k])
else:
assert v == d2[k]
# check for model and optimizer state dict recursively
recursive_check(model.state_dict(), new_model.state_dict())
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())