|
|
|
import tempfile
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.optim import Adam
|
|
|
|
from torchvision.models import resnet18
|
|
|
|
|
|
|
|
from colossalai.checkpoint_io import GeneralCheckpointIO
|
|
|
|
|
|
|
|
# ========
|
|
|
|
# Note:
|
|
|
|
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
|
|
|
|
# 2. we will test on both sharded and unsharded checkpoints
|
|
|
|
# 3. TODO(FrankLeeeee): implement sharded checkpoint and test it
|
|
|
|
# ========
|
|
|
|
|
|
|
|
|
|
|
|
def test_unsharded_checkpoint():
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# create a temp file for checkpoint
|
|
|
|
model_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
|
|
|
|
# save the model and optimizer
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
ckpt_io.save_model(model, model_ckpt_tempfile.name)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
# load the model and optimizer
|
|
|
|
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# do recursive check for the optimizer state dict
|
|
|
|
# if the value is a dict, compare its values
|
|
|
|
# if the value is a list, comapre all elements one-by-one
|
|
|
|
# if the value is a torch.Tensor, use torch.equal
|
|
|
|
# otherwise use assertEqual
|
|
|
|
def recursive_check(d1, d2):
|
|
|
|
for k, v in d1.items():
|
|
|
|
if isinstance(v, dict):
|
|
|
|
recursive_check(v, d2[k])
|
|
|
|
elif isinstance(v, list):
|
|
|
|
for i in range(len(v)):
|
|
|
|
if isinstance(v[i], torch.Tensor):
|
|
|
|
assert torch.equal(v[i], d2[k][i])
|
|
|
|
else:
|
|
|
|
assert v[i] == d2[k][i]
|
|
|
|
elif isinstance(v, torch.Tensor):
|
|
|
|
assert torch.equal(v, d2[k])
|
|
|
|
else:
|
|
|
|
assert v == d2[k]
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
recursive_check(model.state_dict(), new_model.state_dict())
|
|
|
|
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
|