[checkpoint] support huggingface style sharded checkpoint (#3461)

* [checkpoint] support huggingface style sharded checkpoint

* [checkpoint] support huggingface style sharded checkpoint

* [checkpoint] support huggingface style sharded checkpoint

* [checkpoint] support huggingface style sharded checkpoint

* [checkpoint] support huggingface style sharded checkpoint

---------

Co-authored-by: luchen <luchen@luchendeMBP.lan>
pull/3343/head
jiangmingyan 2023-04-06 16:23:39 +08:00 committed by GitHub
parent 6afeb1202a
commit 52a933e175
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 291 additions and 45 deletions

View File

@ -2,37 +2,35 @@ from pathlib import Path
import torch.nn as nn
from torch.optim import Optimizer
import logging
import os
import json
import gc
from .checkpoint_io_base import CheckpointIO
from .index_file import CheckpointIndexFile
from .utils import has_index_file, load_state_dict, save_state_dict
from .utils import (
has_index_file,
load_state_dict,
save_state_dict,
is_safetensors_available,
shard_checkpoint,
load_shard_state_dict,
load_state_dict_into_model
)
from .utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, WEIGHTS_INDEX_NAME
__all__ = ['GeneralCheckpointIO']
class GeneralCheckpointIO(CheckpointIO):
def load_sharded_model(self, model: nn.Module, index_file_path: Path, strict: bool):
# load the index file
index_file = CheckpointIndexFile.from_file(index_file_path)
# iterate over the shard checkpoint files
# and load each
index_file.assert_no_dtensor_checkpoint()
checkpoint_file_list, _ = index_file.get_checkpoint_fileanames()
for shard_file in checkpoint_file_list:
shard_checkpoint = load_state_dict(shard_file)
model.load_state_dict(shard_checkpoint, strict=strict)
"""
Checkpoint IO
"""
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool):
checkpoint = load_state_dict(checkpoint)
model.load_state_dict(checkpoint, strict=strict)
def save_sharded_model(self, model: nn.Module, checkpoint: Path, gather_dtensor: bool, prefix: str,
size_per_shard: int, use_safetensors: bool):
# TODO(FrankLeeeee): implement this method as it can be supported by Huggingface model
raise NotImplementedError("Sharded model checkpoint is not supported yet.")
def save_unsharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
state_dict = model.state_dict()
@ -68,3 +66,68 @@ class GeneralCheckpointIO(CheckpointIO):
):
# TODO(FrankLeeeee): handle distributed tensors
save_state_dict(optimizer.state_dict(), checkpoint, use_safetensors=False)
def save_sharded_model(self, model: nn.Module, checkpoint_path: str, gather_dtensor:bool = False,
prefix: str = "", max_shard_size: int = 1024, use_safetensors: bool = False):
"""
implement this method as it can be supported by Huggingface model,
save shard model, save model to multiple files
"""
if os.path.isfile(checkpoint_path):
logging.error(f"Provided path ({checkpoint_path}) should be a directory, not a file")
return
Path(checkpoint_path).mkdir(parents=True, exist_ok=True)
# shard checkpoint
state_dict = model.state_dict()
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
# Save the model
for shard_file, shard in shards.items():
checkpoint_file_path = os.path.join(checkpoint_path, shard_file)
save_state_dict(shard, checkpoint_file_path, use_safetensors)
# save index file
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME
save_index_file = os.path.join(checkpoint_path, save_index_file)
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
logging.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
def load_sharded_model(self, model: nn.Module, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False):
"""
load shard model, load model from multiple files
"""
use_safetensors = False
if "safetensors" in checkpoint_index_file.name:
use_safetensors = True
if use_safetensors and not is_safetensors_available():
raise ImportError("`safe_serialization` requires the `safetensors` library: `pip install safetensors`.")
# read checkpoint index file
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
checkpoint_files, _ = ckpt_index_file.get_checkpoint_fileanames()
missing_keys = ckpt_index_file.get_all_param_names()
for shard_file in checkpoint_files:
state_dict = load_shard_state_dict(Path(shard_file), use_safetensors)
load_state_dict_into_model(model, state_dict, missing_keys, strict)
del state_dict
gc.collect()
if strict and len(missing_keys) > 0:
error_msgs = 'Missing key(s) in state_dict: {}. '.format(
', '.join('"{}"'.format(k) for k in missing_keys))
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
self.__class__.__name__, "\n\t".join(error_msgs)))

View File

@ -148,3 +148,9 @@ class CheckpointIndexFile:
"""
ckpt_path = self.weight_map[param_name]
return ckpt_path
def get_all_param_names(self):
"""
Get all the weight keys.
"""
return list(self.weight_map.keys())

View File

@ -1,13 +1,19 @@
# coding=utf-8
from pathlib import Path
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from typing import List, Dict, Mapping, OrderedDict, Optional, Tuple
from colossalai.tensor.d_tensor.d_tensor import DTensor
SAFE_WEIGHTS_NAME = "model.safetensors"
WEIGHTS_NAME = "model.bin"
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
WEIGHTS_INDEX_NAME = "model.bin.index.json"
# ======================================
# General helper functions
# ======================================
def calculate_tensor_size(tensor: torch.Tensor) -> float:
"""
Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size.
@ -68,6 +74,130 @@ def is_safetensor_checkpoint(checkpoint_file_path: str) -> bool:
return False
# ======================================
# Helper functions for saving shard file
# ======================================
def shard_checkpoint(state_dict: torch.Tensor, max_shard_size: int = 1024, weights_name: str = WEIGHTS_NAME):
"""
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
"""
sharded_state_dicts = []
current_block = {}
current_block_size = 0
total_size = 0
for key, weight in state_dict.items():
if type(weight) != DTensor:
weight_size = calculate_tensor_size(weight)
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
sharded_state_dicts.append(current_block)
current_block = {}
current_block_size = 0
current_block[key] = weight
current_block_size += weight_size
total_size += weight_size
# Add the last block
sharded_state_dicts.append(current_block)
# If we only have one shard, we return it
if len(sharded_state_dicts) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
weight_map = {}
shards = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
shard_file = shard_file.replace(
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
)
shards[shard_file] = shard
for key in shard.keys():
weight_map[key] = shard_file
# Add the metadata
metadata = {"total_size": total_size}
index = {"metadata": metadata, "weight_map": weight_map}
return shards, index
def load_shard_state_dict(checkpoint_file: Path, use_safetensors: bool =False):
"""
load shard state dict into model
"""
if use_safetensors and not checkpoint_file.suffix == ".safetensors":
raise Exception("load the model using `safetensors`, but no file endwith .safetensors")
if use_safetensors:
from safetensors.torch import safe_open
from safetensors.torch import load_file as safe_load_file
with safe_open(checkpoint_file, framework="pt") as f:
metadata = f.metadata()
if metadata["format"] != "pt":
raise NotImplementedError(
f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
)
return safe_load_file(checkpoint_file)
else:
return torch.load(checkpoint_file)
def load_state_dict_into_model(model: nn.Module, state_dict: torch.Tensor, missing_keys: List, strict: bool = False):
r"""Copies parameters and buffers from :attr:`state_dict` into
this module and its descendants.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
"""
if not isinstance(state_dict, Mapping):
raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict)))
unexpected_keys: List[str] = []
sub_missing_keys: List[str] = []
error_msgs: List[str] = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = OrderedDict(state_dict)
if metadata is not None:
state_dict._metadata = metadata
def load(module: nn.Module, state_dict, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
# Parameters of module and children will start with prefix. We can exit early if there are none in this
# state_dict
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, state_dict, prefix + name + ".")
load(model, state_dict, "")
del load
# deal with missing key
if len(missing_keys) > 0:
deleted_keys = []
for key in missing_keys:
if key not in sub_missing_keys:
deleted_keys.append(key)
for key in deleted_keys:
missing_keys.remove(key)
if strict:
if len(unexpected_keys) > 0:
error_msgs = 'Unexpected key(s) in state_dict: {}. '.format(
', '.join('"{}"'.format(k) for k in unexpected_keys))
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
# ======================================
# Helper functions for saving state dict
# ======================================
@ -86,8 +216,8 @@ def save_state_dict(state_dict: dict, checkpoint_file_path: str, use_safetensors
assert is_safetensors_available(), "safetensors is not available."
assert checkpoint_file_path.endswith('.safetensors'), \
"safetensors only supports .safetensors suffix for checkpoint file."
from safetensors.torch import save_file
save_file(state_dict, checkpoint_file_path)
from safetensors.torch import save_file as safe_save_file
safe_save_file(state_dict, checkpoint_file_path, metadata={"format": "pt"})
else:
torch.save(state_dict, checkpoint_file_path)

View File

@ -1,9 +1,12 @@
import tempfile
import pytest
import torch
import logging
from torch.optim import Adam
from torchvision.models import resnet18
from pathlib import Path
import os
import subprocess
from colossalai.checkpoint_io import GeneralCheckpointIO
from colossalai.testing import clear_cache_before_run, parameterize
@ -12,7 +15,7 @@ from colossalai.testing import clear_cache_before_run, parameterize
# Note:
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
# 2. we will test on both sharded and unsharded checkpoints
# 3. TODO(FrankLeeeee): implement sharded checkpoint and test it
# 3. implement sharded checkpoint and test it
# ========
@ -53,27 +56,71 @@ def test_unsharded_checkpoint(use_safetensors: bool):
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
# do recursive check for the optimizer state dict
# if the value is a dict, compare its values
# if the value is a list, comapre all elements one-by-one
# if the value is a torch.Tensor, use torch.equal
# otherwise use assertEqual
def recursive_check(d1, d2):
for k, v in d1.items():
if isinstance(v, dict):
recursive_check(v, d2[k])
elif isinstance(v, list):
for i in range(len(v)):
if isinstance(v[i], torch.Tensor):
assert torch.equal(v[i], d2[k][i])
else:
assert v[i] == d2[k][i]
elif isinstance(v, torch.Tensor):
assert torch.equal(v, d2[k])
else:
assert v == d2[k]
# check for model and optimizer state dict recursively
recursive_check(model.state_dict(), new_model.state_dict())
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
@pytest.mark.parametrize('use_safetensors', [True, False])
def test_sharded_checkpoint(use_safetensors: bool):
# create a model and optimizer
model = resnet18()
optimizer = Adam(model.parameters(), lr=0.001)
# create test data sample
x = torch.randn(1, 3, 224, 224)
# run fwd and bwd
y = model(x)
loss = y.sum()
loss.backward()
optimizer.step()
# create a temp file for checkpoint
if use_safetensors:
suffix = ".safetensors"
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
else:
suffix = ".bin"
WEIGHTS_INDEX_NAME = "model.bin.index.json"
# model_ckpt_dir = tempfile.TemporaryDirectory(suffix=suffix)
model_ckpt_dir = tempfile.TemporaryDirectory()
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
# save the model and optimizer
ckpt_io = GeneralCheckpointIO()
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=use_safetensors)
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name, shard=False)
# create new model
new_model = resnet18()
new_optimizer = Adam(new_model.parameters(), lr=0.001)
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
# check for model and optimizer state dict recursively
recursive_check(model.state_dict(), new_model.state_dict())
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
# do recursive check for the optimizer state dict
# if the value is a dict, compare its values
# if the value is a list, comapre all elements one-by-one
# if the value is a torch.Tensor, use torch.equal
# otherwise use assertEqual
def recursive_check(d1, d2):
for k, v in d1.items():
if isinstance(v, dict):
recursive_check(v, d2[k])
elif isinstance(v, list):
for i in range(len(v)):
if isinstance(v[i], torch.Tensor):
assert torch.equal(v[i], d2[k][i])
else:
assert v[i] == d2[k][i]
elif isinstance(v, torch.Tensor):
assert torch.equal(v, d2[k])
else:
assert v == d2[k]