mirror of https://github.com/hpcaitech/ColossalAI
[booster] add tests for ddp and low level zero's checkpointio (#3715)
* [booster] update tests for booster * [booster] update tests for booster * [booster] update tests for booster * [booster] update tests for booster * [booster] update tests for booster * [booster] update booster tutorials#3717, fix recursive checkpull/3722/head
parent
6552cbf8e1
commit
20068ba188
|
@ -1,4 +1,11 @@
|
|||
from .comparison import assert_close, assert_close_loose, assert_equal, assert_equal_in_group, assert_not_equal
|
||||
from .comparison import (
|
||||
assert_close,
|
||||
assert_close_loose,
|
||||
assert_equal,
|
||||
assert_equal_in_group,
|
||||
assert_not_equal,
|
||||
check_state_dict_equal,
|
||||
)
|
||||
from .pytest_wrapper import run_on_environment_flag
|
||||
from .utils import (
|
||||
clear_cache_before_run,
|
||||
|
@ -13,5 +20,5 @@ from .utils import (
|
|||
__all__ = [
|
||||
'assert_equal', 'assert_not_equal', 'assert_close', 'assert_close_loose', 'assert_equal_in_group', 'parameterize',
|
||||
'rerun_on_exception', 'rerun_if_address_is_in_use', 'skip_if_not_enough_gpus', 'free_port', 'spawn',
|
||||
'clear_cache_before_run', 'run_on_environment_flag'
|
||||
'clear_cache_before_run', 'run_on_environment_flag', 'check_state_dict_equal'
|
||||
]
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
from typing import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch import Tensor
|
||||
|
@ -28,3 +30,25 @@ def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
|
|||
a = tensor_list[i]
|
||||
b = tensor_list[i + 1]
|
||||
assert torch.all(a == b), f'expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}'
|
||||
|
||||
|
||||
def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True):
|
||||
for k, v in d1.items():
|
||||
if isinstance(v, dict):
|
||||
check_state_dict_equal(v, d2[k])
|
||||
elif isinstance(v, list):
|
||||
for i in range(len(v)):
|
||||
if isinstance(v[i], torch.Tensor):
|
||||
if not ignore_device:
|
||||
v[i] = v[i].to("cpu")
|
||||
d2[k][i] = d2[k][i].to("cpu")
|
||||
assert torch.equal(v[i], d2[k][i])
|
||||
else:
|
||||
assert v[i] == d2[k][i]
|
||||
elif isinstance(v, torch.Tensor):
|
||||
if not ignore_device:
|
||||
v = v.to("cpu")
|
||||
d2[k] = d2[k].to("cpu")
|
||||
assert torch.equal(v, d2[k])
|
||||
else:
|
||||
assert v == d2[k]
|
||||
|
|
|
@ -0,0 +1,98 @@
|
|||
import tempfile
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
|
||||
from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import ColoInitContext, ZeroDDP
|
||||
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
|
||||
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('model_name', ['bert'])
|
||||
@parameterize('use_safetensors', [True, False])
|
||||
def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool):
|
||||
from transformers import BertForSequenceClassification
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, *_ = get_components_func()
|
||||
with ColoInitContext(device=(get_current_device())):
|
||||
bert_model = model_builder()
|
||||
bert_model.config.save_pretrained(save_directory=(model_ckpt_dir.name))
|
||||
|
||||
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
bert_model = ZeroDDP(bert_model, gemini_manager)
|
||||
bert_model.train()
|
||||
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
if ckpt_io.coordinator.is_master():
|
||||
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
|
||||
ckpt_io.save_model(bert_model, (model_ckpt_dir.name),
|
||||
True,
|
||||
True,
|
||||
'', (model_size / 3),
|
||||
use_safetensors=use_safetensors)
|
||||
new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name)
|
||||
check_state_dict_equal(bert_model.state_dict(only_rank_0=True, dtype=(torch.float32)),
|
||||
new_bert_model.state_dict(), False)
|
||||
model_ckpt_dir.cleanup()
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
@parameterize('use_safetensors', [True, False])
|
||||
def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, *_ = get_components_func()
|
||||
with ColoInitContext(device=(get_current_device())):
|
||||
model = model_builder()
|
||||
new_model = model_builder()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
|
||||
model.train()
|
||||
#new model
|
||||
new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100)
|
||||
new_chunk_manager = ChunkManager(new_config_dict)
|
||||
new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager)
|
||||
new_model = ZeroDDP(new_model, new_gemini_manager)
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
||||
ckpt_io.save_model(model, (model_ckpt_dir.name),
|
||||
True,
|
||||
True,
|
||||
'epoch', (model_size / 3),
|
||||
use_safetensors=use_safetensors)
|
||||
|
||||
if ckpt_io.coordinator.is_master():
|
||||
ckpt_io.load_model(new_model, (model_ckpt_dir.name), strict=True)
|
||||
model_dict = model.state_dict(only_rank_0=True)
|
||||
new_model_dict = new_model.state_dict(only_rank_0=True)
|
||||
check_state_dict_equal(model_dict, new_model_dict, False)
|
||||
model_ckpt_dir.cleanup()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
exam_state_dict()
|
||||
exam_state_dict_with_origin()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [4, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gemini_ckpIO(world_size):
|
||||
spawn(run_dist, world_size)
|
|
@ -1,20 +1,13 @@
|
|||
import tempfile
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.optim import Adam
|
||||
from torchvision.models import resnet18
|
||||
|
||||
from colossalai.checkpoint_io import GeneralCheckpointIO
|
||||
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
|
||||
from colossalai.testing import clear_cache_before_run, parameterize
|
||||
|
||||
import colossalai
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import ColoInitContext, ZeroDDP
|
||||
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
|
||||
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from colossalai.checkpoint_io import GeneralCheckpointIO
|
||||
from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize
|
||||
|
||||
# ========
|
||||
# Note:
|
||||
|
@ -61,10 +54,10 @@ def test_unsharded_checkpoint(use_safetensors: bool):
|
|||
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
||||
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
||||
|
||||
|
||||
# check for model and optimizer state dict recursively
|
||||
recursive_check(model.state_dict(), new_model.state_dict())
|
||||
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
|
||||
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
||||
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('use_safetensors', [True, False])
|
||||
def test_sharded_checkpoint(use_safetensors: bool):
|
||||
|
@ -87,7 +80,7 @@ def test_sharded_checkpoint(use_safetensors: bool):
|
|||
else:
|
||||
suffix = ".bin"
|
||||
WEIGHTS_INDEX_NAME = "model.bin.index.json"
|
||||
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||
|
||||
|
@ -96,7 +89,7 @@ def test_sharded_checkpoint(use_safetensors: bool):
|
|||
|
||||
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=use_safetensors)
|
||||
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name, shard=False)
|
||||
|
||||
|
||||
# create new model
|
||||
new_model = resnet18()
|
||||
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
||||
|
@ -105,111 +98,5 @@ def test_sharded_checkpoint(use_safetensors: bool):
|
|||
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
||||
|
||||
# check for model and optimizer state dict recursively
|
||||
recursive_check(model.state_dict(), new_model.state_dict())
|
||||
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('model_name', ['bert'])
|
||||
@parameterize('use_safetensors', [True, False])
|
||||
def hf_load_colossalai_checkpoint(placement_policy, model_name, use_safetensors: bool):
|
||||
from transformers import BertTokenizer, BertModel, BertForMaskedLM, BertConfig, BertForSequenceClassification
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, *_ = get_components_func()
|
||||
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
bert_model = model_builder()
|
||||
bert_model.config.save_pretrained(save_directory=model_ckpt_dir.name)
|
||||
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
bert_model = ZeroDDP(bert_model, gemini_manager)
|
||||
bert_model.train()
|
||||
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
if ckpt_io.coordinator.is_master():
|
||||
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
|
||||
ckpt_io.save_model(bert_model, model_ckpt_dir.name, True, True, "", (model_size / 3), use_safetensors=use_safetensors)
|
||||
new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name)
|
||||
recursive_check(bert_model.state_dict(only_rank_0=True, dtype=torch.float32), new_bert_model.state_dict())
|
||||
|
||||
model_ckpt_dir.cleanup()
|
||||
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
@parameterize('use_safetensors', [True, False])
|
||||
def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, *_ = get_components_func()
|
||||
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder()
|
||||
new_model = model_builder()
|
||||
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
model.train()
|
||||
|
||||
new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100)
|
||||
new_chunk_manager = ChunkManager(new_config_dict)
|
||||
new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager)
|
||||
new_model = ZeroDDP(new_model, new_gemini_manager)
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
||||
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "epoch", (model_size / 3), use_safetensors=use_safetensors)
|
||||
|
||||
# load model
|
||||
if ckpt_io.coordinator.is_master():
|
||||
ckpt_io.load_model(new_model, model_ckpt_dir.name, strict=True)
|
||||
model_dict = model.state_dict(only_rank_0=True)
|
||||
new_model_dict = new_model.state_dict(only_rank_0=True)
|
||||
recursive_check(model_dict, new_model_dict)
|
||||
|
||||
model_ckpt_dir.cleanup()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
exam_state_dict()
|
||||
hf_load_colossalai_checkpoint()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [4, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gemini_ckpIO(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
# do recursive check for the optimizer state dict
|
||||
# if the value is a dict, compare its values
|
||||
# if the value is a list, comapre all elements one-by-one
|
||||
# if the value is a torch.Tensor, use torch.equal
|
||||
# otherwise use assertEqual
|
||||
def recursive_check(d1, d2):
|
||||
for k, v in d1.items():
|
||||
if isinstance(v, dict):
|
||||
recursive_check(v, d2[k])
|
||||
elif isinstance(v, list):
|
||||
for i in range(len(v)):
|
||||
if isinstance(v[i], torch.Tensor):
|
||||
v[i] = v[i].to("cpu")
|
||||
d2[k][i] = d2[k][i].to("cpu")
|
||||
assert torch.equal(v[i], d2[k][i])
|
||||
else:
|
||||
assert v[i] == d2[k][i]
|
||||
elif isinstance(v, torch.Tensor):
|
||||
v = v.to("cpu")
|
||||
d2[k] = d2[k].to("cpu")
|
||||
assert torch.equal(v, d2[k])
|
||||
else:
|
||||
assert v == d2[k]
|
||||
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
||||
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
import tempfile
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torchvision.models import resnet18
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import LowLevelZeroPlugin
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroCheckpointIO
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import (
|
||||
check_state_dict_equal,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
|
||||
|
||||
@clear_cache_before_run()
|
||||
@parameterize('stage', [2])
|
||||
def check_low_level_zero_checkpointIO(stage: int):
|
||||
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=32)
|
||||
booster = Booster(plugin=plugin)
|
||||
model = resnet18()
|
||||
criterion = lambda x: x.mean()
|
||||
optimizer = HybridAdam((model.parameters()), lr=0.001)
|
||||
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||||
|
||||
x = torch.randn(4, 3, 224, 224)
|
||||
x = x.to('cuda')
|
||||
output = model(x)
|
||||
loss = criterion(output)
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.step()
|
||||
|
||||
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||
ckpt_io = LowLevelZeroCheckpointIO()
|
||||
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
||||
|
||||
if ckpt_io.coordinator.is_master():
|
||||
new_model = resnet18()
|
||||
new_optimizer = HybridAdam((new_model.parameters()), lr=0.001)
|
||||
_, new_optimizer, _, _, _ = booster.boost(new_model, new_optimizer)
|
||||
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
||||
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=(dict()), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_low_level_zero_checkpointIO()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_low_level_zero_checkpointIO():
|
||||
spawn(run_dist, 2)
|
|
@ -0,0 +1,63 @@
|
|||
import tempfile
|
||||
|
||||
import torch
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import SGD
|
||||
from torchvision.models import resnet18
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import TorchDDPPlugin
|
||||
from colossalai.booster.plugin.torch_ddp_plugin import TorchDDPCheckpointIO
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.testing import check_state_dict_equal, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_torch_ddp_checkpointIO():
|
||||
plugin = TorchDDPPlugin()
|
||||
booster = Booster(plugin=plugin)
|
||||
model = resnet18()
|
||||
criterion = lambda x: x.mean()
|
||||
optimizer = SGD((model.parameters()), lr=0.001)
|
||||
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
|
||||
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion, lr_scheduler=scheduler)
|
||||
|
||||
assert isinstance(model.module, DDP)
|
||||
assert isinstance(optimizer, OptimizerWrapper)
|
||||
|
||||
x = torch.randn(4, 3, 224, 224)
|
||||
x = x.to('cuda')
|
||||
output = model(x)
|
||||
loss = criterion(output)
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.clip_grad_by_norm(1.0)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
|
||||
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||
lr_scheduler_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||
ckpt_io = TorchDDPCheckpointIO()
|
||||
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
||||
ckpt_io.save_lr_scheduler(scheduler, lr_scheduler_ckpt_tempfile.name)
|
||||
|
||||
if ckpt_io.coordinator.is_master():
|
||||
new_model = resnet18()
|
||||
new_optimizer = SGD((new_model.parameters()), lr=0.001)
|
||||
new_scheduler = torch.optim.lr_scheduler.StepLR(new_optimizer, step_size=1, gamma=0.1)
|
||||
_, new_optimizer, _, _, new_scheduler = booster.boost(new_model, new_optimizer, lr_scheduler=new_scheduler)
|
||||
|
||||
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
||||
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
|
||||
|
||||
ckpt_io.load_lr_scheduler(new_scheduler, lr_scheduler_ckpt_tempfile.name)
|
||||
check_state_dict_equal(scheduler.state_dict(), new_scheduler.state_dict(), False)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=(dict()), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_torch_ddp_checkpointIO()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_torch_ddp_checkpointIO():
|
||||
spawn(run_dist, 2)
|
Loading…
Reference in New Issue