|
|
|
import tempfile
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
from torch.optim import Adam
|
|
|
|
from torchvision.models import resnet18
|
|
|
|
|
|
|
|
from colossalai.checkpoint_io import GeneralCheckpointIO
|
|
|
|
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
|
|
|
|
from colossalai.testing import clear_cache_before_run, parameterize
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from colossalai.zero import ColoInitContext, ZeroDDP
|
|
|
|
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
|
|
|
|
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
|
|
|
|
# ========
|
|
|
|
# Note:
|
|
|
|
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
|
|
|
|
# 2. we will test on both sharded and unsharded checkpoints
|
|
|
|
# 3. implement sharded checkpoint and test it
|
|
|
|
# ========
|
|
|
|
|
|
|
|
|
|
|
|
@clear_cache_before_run()
|
|
|
|
@parameterize('use_safetensors', [True, False])
|
|
|
|
def test_unsharded_checkpoint(use_safetensors: bool):
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# create a temp file for checkpoint
|
|
|
|
if use_safetensors:
|
|
|
|
suffix = ".safetensors"
|
|
|
|
else:
|
|
|
|
suffix = ".bin"
|
|
|
|
model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix)
|
|
|
|
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
|
|
|
|
# save the model and optimizer
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
# load the model and optimizer
|
|
|
|
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
recursive_check(model.state_dict(), new_model.state_dict())
|
|
|
|
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('use_safetensors', [True, False])
|
|
|
|
def test_sharded_checkpoint(use_safetensors: bool):
|
|
|
|
# create a model and optimizer
|
|
|
|
model = resnet18()
|
|
|
|
optimizer = Adam(model.parameters(), lr=0.001)
|
|
|
|
# create test data sample
|
|
|
|
x = torch.randn(1, 3, 224, 224)
|
|
|
|
|
|
|
|
# run fwd and bwd
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# create a temp file for checkpoint
|
|
|
|
if use_safetensors:
|
|
|
|
suffix = ".safetensors"
|
|
|
|
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
|
|
|
|
else:
|
|
|
|
suffix = ".bin"
|
|
|
|
WEIGHTS_INDEX_NAME = "model.bin.index.json"
|
|
|
|
|
|
|
|
model_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
|
|
|
|
|
|
|
# save the model and optimizer
|
|
|
|
ckpt_io = GeneralCheckpointIO()
|
|
|
|
|
|
|
|
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=use_safetensors)
|
|
|
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name, shard=False)
|
|
|
|
|
|
|
|
# create new model
|
|
|
|
new_model = resnet18()
|
|
|
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True)
|
|
|
|
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
|
|
|
|
|
|
|
# check for model and optimizer state dict recursively
|
|
|
|
recursive_check(model.state_dict(), new_model.state_dict())
|
|
|
|
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
|
|
|
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu'])
|
|
|
|
@parameterize('model_name', ['bert'])
|
|
|
|
@parameterize('use_safetensors', [True, False])
|
|
|
|
def hf_load_colossalai_checkpoint(placement_policy, model_name, use_safetensors: bool):
|
|
|
|
from transformers import BertTokenizer, BertModel, BertForMaskedLM, BertConfig, BertForSequenceClassification
|
|
|
|
|
|
|
|
model_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
|
|
model_builder, *_ = get_components_func()
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
bert_model = model_builder()
|
|
|
|
bert_model.config.save_pretrained(save_directory=model_ckpt_dir.name)
|
|
|
|
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
|
|
|
|
chunk_manager = ChunkManager(config_dict)
|
|
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
|
|
|
bert_model = ZeroDDP(bert_model, gemini_manager)
|
|
|
|
bert_model.train()
|
|
|
|
|
|
|
|
ckpt_io = GeminiCheckpointIO()
|
|
|
|
if ckpt_io.coordinator.is_master():
|
|
|
|
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
|
|
|
|
ckpt_io.save_model(bert_model, model_ckpt_dir.name, True, True, "", (model_size / 3), use_safetensors=use_safetensors)
|
|
|
|
new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name)
|
|
|
|
recursive_check(bert_model.state_dict(only_rank_0=True, dtype=torch.float32), new_bert_model.state_dict())
|
|
|
|
|
|
|
|
model_ckpt_dir.cleanup()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu'])
|
|
|
|
@parameterize('model_name', ['gpt2', 'bert'])
|
|
|
|
@parameterize('use_safetensors', [True, False])
|
|
|
|
def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool):
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
|
|
model_builder, *_ = get_components_func()
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = model_builder()
|
|
|
|
new_model = model_builder()
|
|
|
|
|
|
|
|
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
|
|
|
chunk_manager = ChunkManager(config_dict)
|
|
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
|
|
|
model = ZeroDDP(model, gemini_manager)
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100)
|
|
|
|
new_chunk_manager = ChunkManager(new_config_dict)
|
|
|
|
new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager)
|
|
|
|
new_model = ZeroDDP(new_model, new_gemini_manager)
|
|
|
|
|
|
|
|
model_ckpt_dir = tempfile.TemporaryDirectory()
|
|
|
|
|
|
|
|
ckpt_io = GeminiCheckpointIO()
|
|
|
|
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
|
|
|
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "epoch", (model_size / 3), use_safetensors=use_safetensors)
|
|
|
|
|
|
|
|
# load model
|
|
|
|
if ckpt_io.coordinator.is_master():
|
|
|
|
ckpt_io.load_model(new_model, model_ckpt_dir.name, strict=True)
|
|
|
|
model_dict = model.state_dict(only_rank_0=True)
|
|
|
|
new_model_dict = new_model.state_dict(only_rank_0=True)
|
|
|
|
recursive_check(model_dict, new_model_dict)
|
|
|
|
|
|
|
|
model_ckpt_dir.cleanup()
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = {}
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
exam_state_dict()
|
|
|
|
hf_load_colossalai_checkpoint()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [4, 4])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_gemini_ckpIO(world_size):
|
|
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
|
|
|
|
|
|
# do recursive check for the optimizer state dict
|
|
|
|
# if the value is a dict, compare its values
|
|
|
|
# if the value is a list, comapre all elements one-by-one
|
|
|
|
# if the value is a torch.Tensor, use torch.equal
|
|
|
|
# otherwise use assertEqual
|
|
|
|
def recursive_check(d1, d2):
|
|
|
|
for k, v in d1.items():
|
|
|
|
if isinstance(v, dict):
|
|
|
|
recursive_check(v, d2[k])
|
|
|
|
elif isinstance(v, list):
|
|
|
|
for i in range(len(v)):
|
|
|
|
if isinstance(v[i], torch.Tensor):
|
|
|
|
v[i] = v[i].to("cpu")
|
|
|
|
d2[k][i] = d2[k][i].to("cpu")
|
|
|
|
assert torch.equal(v[i], d2[k][i])
|
|
|
|
else:
|
|
|
|
assert v[i] == d2[k][i]
|
|
|
|
elif isinstance(v, torch.Tensor):
|
|
|
|
v = v.to("cpu")
|
|
|
|
d2[k] = d2[k].to("cpu")
|
|
|
|
assert torch.equal(v, d2[k])
|
|
|
|
else:
|
|
|
|
assert v == d2[k]
|