ColossalAI/colossalai/auto_parallel/tensor_shard/sharding_strategy.py

286 lines
11 KiB
Python
Raw Normal View History

from copy import deepcopy
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, List, Tuple, Union
import torch
from torch.fx.node import Node
from colossalai.tensor.comm_spec import CommSpec
from colossalai.tensor.sharding_spec import ShardingSpec
from .constants import (
ELEMENTWISE_FUNC_OP,
ELEMENTWISE_METHOD_OP,
ELEMENTWISE_MODULE_OP,
RESHAPE_FUNC_OP,
RESHAPE_METHOD_OP,
)
__all__ = ["OperationDataType", "OperationData", "TrainCycleItem", "MemoryCost", "ShardingStrategy", "StrategiesVector"]
class OperationDataType(Enum):
"""
An operation can come from the argument list of an operator or the parameter list of a module.
"""
INPUT = 0
ARG = 1
PARAM = 2
BUFFER = 3
OUTPUT = 4
@dataclass
class OperationData:
"""
OperationData is the data related to an operator, the data can be the operand or the output.
Args:
name (str): the name of the operation-related data
type (OperationDataType): the type of the operation data
data (Any): the value for this data, usually it is a meta tensor.
logical_shape (Tuple[int]): the logical shape of the data, it can be different from the its actual shape in memory.
"""
name: str
type: OperationDataType
data: Any
logical_shape: Tuple[int] = None
def __post_init__(self):
# if no logical shape is specified, use the data shape as the logical shape
if self.logical_shape is None:
def _infer_logical_shape(data: any):
"""
This function is used to infer the logical shape of the data.
"""
if isinstance(data, torch.Tensor):
return data.shape
elif isinstance(data, torch.Size):
return None
elif isinstance(data, (tuple, list)):
data_type = type(data)
return data_type([_infer_logical_shape(d) for d in data])
else:
return None
self.logical_shape = _infer_logical_shape(self.data)
def __repr__(self) -> str:
return f"OperationData(name={self.name}, type={self.type})"
def __eq__(self, other) -> bool:
return other.name == self.name
def __hash__(self) -> int:
return hash(f"{self.name}")
@dataclass
class TrainCycleItem:
"""
TrainCycleItem is a dataclass to store the items which have different values for the forward and backward pass
in a training iteration.
Args:
fwd (float): the item for the forward pass
bwd (float): the item for the backward pass
"""
fwd: Any
bwd: Any
total: Any
@dataclass
class MemoryCost:
"""
MemoryCost is a dataclass which stores the memory usage in the program.
Args:
activation (int): the memory cost incurred by the activations in bytes.
parameter (int): the memory cost incurred by the module parameter in bytes.
temp (int): the memory cost incurred by the temporary tensors in bytes.
buffer (int): the memory cost incurred by the module buffer in bytes.
"""
activation: int = 0
parameter: int = 0
temp: int = 0
buffer: int = 0
class CommType(Enum):
"""
CommType describes the sequential order of a communication action and a computation action.
Meaning:
BEFORE: the communication action happens just before the computation operation.
AFTER: the communication action happens after the computation operation.
HOOK: the communication action is used to do the grad all reduce.
IMPLICIT: the communication action happens during the kernel execution, such as SyncBatchNorm
"""
BEFORE = 0
AFTER = 1
HOOK = 2
IMPLICIT = 3
@dataclass
class CommAction:
"""
CommAction is used to record the communication action.
Args:
comm_spec: express the communication pattern and the process groups to execute the communication action.
comm_type: describes the sequential order of a communication action and a computation action.
arg_index: record the location of tensor which join the communication, we cannot use name of node or op_data at runtime,
because the args of node may be changed by graph transform passes.
"""
comm_spec: CommSpec = None
comm_type: CommType = None
arg_index: int = -1
key_for_kwarg: any = None
@dataclass
class ShardingStrategy:
"""
ShardingStrategy is a dataclass to store the meta information on tensor sharding for a node.
Args:
name (str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
output_sharding_spec (ShardingSpec): ShardingSpec of the output node.
compute_cost (TrainCycleItem): Computation cost to complete this strategy. (default to None)
communication_cost (TrainCycleItem): Communication cost to complete this strategy. (default to None)
memory_cost (TrainCycleItem): Memory cost of the output node using this strategy. (default to None)
input_sharding_specs (List(ShardingSpec)): The ShardingSpecs of the input nodes.
"""
name: str
sharding_specs: Dict[OperationData, Union[ShardingSpec, Tuple[ShardingSpec]]] = None
compute_cost: TrainCycleItem = None
communication_cost: TrainCycleItem = None
memory_cost: TrainCycleItem = None
communication_actions: Dict[OperationData, CommAction] = None
resharding_costs: Dict[Node, List[TrainCycleItem]] = None
@property
def input_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
specs = {}
specs.update(self._get_sharding_spec(OperationDataType.ARG))
specs.update(self._get_sharding_spec(OperationDataType.PARAM))
return specs
@property
def argument_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.ARG)
@property
def param_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.PARAM)
@property
def output_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.OUTPUT)
def _get_sharding_spec(self, operation_data_type: OperationDataType):
specs = {k: v for k, v in self.sharding_specs.items() if k.type == operation_data_type}
return specs
def get_op_data_by_name(self, name: str):
for op_data in self.sharding_specs.keys():
if op_data.name == name:
return op_data
raise KeyError(f"Could not find the OperationData with name {name}")
def get_sharding_spec_by_name(self, name: str):
for op_data, sharding_spec in self.sharding_specs.items():
if op_data.name == name:
return sharding_spec
raise KeyError(f"Could not find the ShardingSpec for OperationData with name {name}")
def clone(self):
def _deepcopy_dict_vals(data: Dict):
return {k: deepcopy(v) for k, v in data.items()}
sharding_specs = _deepcopy_dict_vals(self.sharding_specs) if self.sharding_specs is not None else None
# We need to deepcopy it when self.communication_actions is not None, instead of checking its __bool__ value.
# Consider the examples below:
# If self.communication_actions is an empty dictionary {}, then self.communication_actions is not None, but its __bool__ value is False.
# In this case, if we set None to the new object, program will crash when we try to access the communication_actions.items.
communication_actions = (
_deepcopy_dict_vals(self.communication_actions) if self.communication_actions is not None else None
)
# same reason as communication_actions
resharding_costs = _deepcopy_dict_vals(self.resharding_costs) if self.resharding_costs is not None else None
compute_cost = deepcopy(self.compute_cost)
communication_cost = deepcopy(self.communication_cost)
memory_cost = deepcopy(self.memory_cost)
return ShardingStrategy(
name=self.name,
sharding_specs=sharding_specs,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
communication_actions=communication_actions,
resharding_costs=resharding_costs,
)
class StrategiesVector(list):
"""
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node (Node): node for which the list of sharding strategies are generated.
"""
def __init__(self, node: Node):
super().__init__()
self.node = node
# fetch its input and output nodes
# TODO: placeholder input nodes
self.predecessor_nodes = list(node._input_nodes.keys())
self.successor_nodes = list(node.users.keys())
def check_merge(self):
merge_label = False
if self.node.op == "call_module":
target = self.node.target
root_module = self.node.graph.owning_module
submod = root_module.get_submodule(target)
submod_type = type(submod)
# merge elementwise module node into source nodes
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if submod_type in ELEMENTWISE_MODULE_OP:
merge_label = True
if self.node.op == "call_function":
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if self.node.target in ELEMENTWISE_FUNC_OP:
merge_label = True
# we could merge bcast op if the rhs is a scalar, because it will fall back to the element-wise case.
# TODO: remove this after we support the fall back logic.
# if self.node.target in BCAST_FUNC_OP and len(self.predecessor_nodes) == 1:
# merge_label = True
# we could merge reshape op, because their computation costs are negligible.
if self.node.target in RESHAPE_FUNC_OP:
merge_label = True
if self.node.op == "call_method":
# we could merge reshape op, because their computation costs are negligible.
method = getattr(self.node.args[0]._meta_data.__class__, self.node.target)
if method in RESHAPE_METHOD_OP:
merge_label = True
if method in ELEMENTWISE_METHOD_OP:
merge_label = True
return merge_label