mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] added sharding spec conversion for linear handler (#1687)
parent
af718e83f2
commit
4973157ad7
|
@ -1,10 +1,13 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from colossalai.tensor.sharding_spec import ShardingException
|
||||
from .node_handler import ModuleHandler, NodeHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData
|
||||
from ..strategy import LinearProjectionStrategyGenerator, StrategyGenerator_V2, BatchedMatMulStrategyGenerator
|
||||
from typing import List, Dict
|
||||
from typing import List, Dict, Union
|
||||
from .registry import operator_registry
|
||||
from copy import deepcopy
|
||||
from .utils import switch_partition_dim, update_partition_dim
|
||||
|
||||
__all__ = ['LinearModuleHandler', 'LinearFunctionHandler', 'BMMFunctionHandler']
|
||||
|
||||
|
@ -24,14 +27,22 @@ class LinearModuleHandler(ModuleHandler):
|
|||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
input_meta_data = self.node.args[0]._meta_data
|
||||
input_logical_shape = input_meta_data.view(-1, input_meta_data.shape[-1]).shape
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data)
|
||||
data=input_meta_data,
|
||||
logical_shape=input_logical_shape)
|
||||
physical_other_operand = OperationData(name="weight",
|
||||
type=OperationDataType.PARAM,
|
||||
data=self.named_parameters['weight'],
|
||||
logical_shape=self.named_parameters['weight'].shape[::-1])
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
output_meta_data = self.node._meta_data
|
||||
output_logical_shape = output_meta_data.view(-1, output_meta_data.shape[-1]).shape
|
||||
physical_output = OperationData(name=str(self.node),
|
||||
type=OperationDataType.OUTPUT,
|
||||
data=output_meta_data,
|
||||
logical_shape=output_logical_shape)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
|
@ -42,28 +53,46 @@ class LinearModuleHandler(ModuleHandler):
|
|||
mapping['bias'] = physical_bias_operand
|
||||
return mapping
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy_V2):
|
||||
def post_process(self, strategy: ShardingStrategy_V2) -> Union[ShardingStrategy_V2, List[ShardingStrategy_V2]]:
|
||||
"""
|
||||
Convert the sharding spec of the weight parameter back to its original shape.
|
||||
Convert the sharding spec from the logical shape to the physical shape.
|
||||
"""
|
||||
# switch the dimensions of the transposed weight
|
||||
for op_data, sharding_spec in strategy.input_sharding_specs.items():
|
||||
if op_data.name == "weight":
|
||||
assert op_data.logical_shape != op_data.data.shape
|
||||
dim_partition_dict = sharding_spec.dim_partition_dict
|
||||
switch_partition_dim(sharding_spec, 0, -1)
|
||||
|
||||
# switch first and last dim of the linear module weight
|
||||
first_dim_partition = dim_partition_dict.pop(-1, None)
|
||||
last_dim_partition = dim_partition_dict.pop(0, None)
|
||||
# create multiple sharding strategies for the inputs
|
||||
# as input can be multi-dimensinal and the partition dim is only 2D,
|
||||
# we need to map the partition at dim 0 to one of the first few dimensions of the input
|
||||
sharding_strategies = []
|
||||
input_op_data = strategy.get_op_data_by_name(str(self.node.args[0]))
|
||||
output_op_data = strategy.get_op_data_by_name(str(self.node))
|
||||
num_input_dims = input_op_data.data.dim()
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name(input_op_data.name)
|
||||
|
||||
if first_dim_partition:
|
||||
dim_partition_dict[0] = first_dim_partition
|
||||
if 0 in input_sharding_spec.dim_partition_dict:
|
||||
for i in range(num_input_dims - 1):
|
||||
new_strategy = strategy.clone()
|
||||
input_sharding_spec = new_strategy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = new_strategy.get_sharding_spec_by_name(output_op_data.name)
|
||||
try:
|
||||
update_partition_dim(sharding_spec=input_sharding_spec,
|
||||
dim_mapping={0: i},
|
||||
physical_shape=input_op_data.data.shape,
|
||||
inplace=True)
|
||||
update_partition_dim(sharding_spec=output_sharding_spec,
|
||||
dim_mapping={0: i},
|
||||
physical_shape=output_op_data.data.shape,
|
||||
inplace=True)
|
||||
sharding_strategies.append(new_strategy)
|
||||
except ShardingException:
|
||||
pass
|
||||
else:
|
||||
sharding_strategies.append(strategy)
|
||||
|
||||
if last_dim_partition:
|
||||
dim_partition_dict[-1] = last_dim_partition
|
||||
|
||||
# re-init the sharding spec
|
||||
sharding_spec.__init__(sharding_spec.device_mesh, sharding_spec.entire_shape, dim_partition_dict)
|
||||
return strategy
|
||||
return sharding_strategies
|
||||
|
||||
|
||||
@operator_registry.register(F.linear)
|
||||
|
@ -118,20 +147,37 @@ class LinearFunctionHandler(NodeHandler):
|
|||
for op_data, sharding_spec in strategy.input_sharding_specs.items():
|
||||
if op_data.name == str(self.node.args[1]):
|
||||
assert op_data.logical_shape != op_data.data.shape
|
||||
dim_partition_dict = sharding_spec.dim_partition_dict
|
||||
switch_partition_dim(sharding_spec, 0, -1)
|
||||
|
||||
# switch first and last dim of the linear module weight
|
||||
first_dim_partition = dim_partition_dict.pop(-1, None)
|
||||
last_dim_partition = dim_partition_dict.pop(0, None)
|
||||
# create multiple sharding strategies for the inputs
|
||||
# as input can be multi-dimensinal and the partition dim is only 2D,
|
||||
# we need to map the partition at dim 0 to one of the first few dimensions of the input
|
||||
sharding_strategies = []
|
||||
input_op_data = strategy.get_op_data_by_name(str(self.node.args[0]))
|
||||
output_op_data = strategy.get_op_data_by_name(str(self.node))
|
||||
num_input_dims = input_op_data.data.dim()
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name(input_op_data.name)
|
||||
|
||||
if first_dim_partition:
|
||||
dim_partition_dict[0] = first_dim_partition
|
||||
if 0 in input_sharding_spec.dim_partition_dict:
|
||||
for i in range(num_input_dims - 1):
|
||||
new_strategy = strategy.clone()
|
||||
input_sharding_spec = new_strategy.get_sharding_spec_by_name(input_op_data.name)
|
||||
output_sharding_spec = new_strategy.get_sharding_spec_by_name(output_op_data.name)
|
||||
try:
|
||||
update_partition_dim(sharding_spec=input_sharding_spec,
|
||||
dim_mapping={0: i},
|
||||
physical_shape=input_op_data.data.shape,
|
||||
inplace=True)
|
||||
update_partition_dim(sharding_spec=output_sharding_spec,
|
||||
dim_mapping={0: i},
|
||||
physical_shape=output_op_data.data.shape,
|
||||
inplace=True)
|
||||
sharding_strategies.append(new_strategy)
|
||||
except ShardingException:
|
||||
pass
|
||||
else:
|
||||
sharding_strategies.append(strategy)
|
||||
|
||||
if last_dim_partition:
|
||||
dim_partition_dict[-1] = last_dim_partition
|
||||
|
||||
# re-init the sharding spec
|
||||
sharding_spec.__init__(sharding_spec.device_mesh, sharding_spec.entire_shape, dim_partition_dict)
|
||||
return strategy
|
||||
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ from abc import ABC, abstractmethod
|
|||
from torch.fx.node import Node
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Union
|
||||
from ..sharding_strategy import ShardingStrategy_V2, StrategiesVector, OperationData, TrainCycleItem
|
||||
from ..strategy import StrategyGenerator_V2
|
||||
|
||||
|
@ -72,17 +72,27 @@ class NodeHandler(ABC):
|
|||
for generator in strategy_generators:
|
||||
strategies = generator.generate()
|
||||
|
||||
# postprocess a strategy
|
||||
# postprocess can produce one strategy or multiple strategies
|
||||
post_processed_strategies_map = map(self.post_process, strategies)
|
||||
post_processed_strategies = []
|
||||
|
||||
for strategy in post_processed_strategies_map:
|
||||
if isinstance(strategy, (list, tuple)):
|
||||
post_processed_strategies.extend(strategy)
|
||||
else:
|
||||
post_processed_strategies.append(strategy)
|
||||
|
||||
# compute the resharding costs based on the previous node
|
||||
# strategies if specified
|
||||
if compute_resharding_cost:
|
||||
strategies = list(map(self.update_resharding_cost, strategies))
|
||||
self.strategies_vector.extend(strategies)
|
||||
post_processed_strategies = list(map(self.update_resharding_cost, post_processed_strategies))
|
||||
|
||||
self.strategies_vector.extend(post_processed_strategies)
|
||||
|
||||
strategies_vector = map(self.post_process, self.strategies_vector)
|
||||
self.strategies_vector = list(strategies_vector)
|
||||
return self.strategies_vector
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy_V2):
|
||||
def post_process(self, strategy: ShardingStrategy_V2) -> Union[ShardingStrategy_V2, List[ShardingStrategy_V2]]:
|
||||
# tranform the strategy generated
|
||||
# e.g. to process the sharding strategy for the transposed weights
|
||||
return strategy
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
import torch
|
||||
from typing import Dict
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
def switch_partition_dim(sharding_spec: ShardingSpec, dim1: int, dim2: int) -> ShardingSpec:
|
||||
"""
|
||||
Switch the sharding mesh dimensions for two tensor dimensions. This operation is in-place.
|
||||
|
||||
Args:
|
||||
sharding_spec (ShardingSpec): the sharding spec for which partition dim are switched
|
||||
dim1 (int): the tensor dimension to switch
|
||||
dim2 (int): the tensor dimension to switch
|
||||
"""
|
||||
assert len(sharding_spec.entire_shape) == 2
|
||||
dim_partition_dict = sharding_spec.dim_partition_dict
|
||||
dim1_partition = dim_partition_dict.pop(dim1, None)
|
||||
dim2_partition = dim_partition_dict.pop(dim2, None)
|
||||
|
||||
if dim1_partition:
|
||||
dim_partition_dict[dim2] = dim1_partition
|
||||
|
||||
if dim2_partition:
|
||||
dim_partition_dict[dim1] = dim2_partition
|
||||
|
||||
# re-init the sharding spec
|
||||
sharding_spec.__init__(sharding_spec.device_mesh, sharding_spec.entire_shape, dim_partition_dict)
|
||||
return sharding_spec
|
||||
|
||||
|
||||
def update_partition_dim(sharding_spec: ShardingSpec,
|
||||
dim_mapping: Dict[int, int],
|
||||
physical_shape: torch.Size,
|
||||
inplace: bool = False):
|
||||
"""
|
||||
This method is used to update the partition dim dict from the logical one to the physical one.
|
||||
|
||||
Args:
|
||||
sharding_spec (ShardingSpec): the sharding spec for which partition dims are updated
|
||||
dim_mapping (Dict[int, int]): the mapping from the logical tensor dimension to the physical tensor dimension
|
||||
physical_shape (torch.Size): the physical shape for the tensor
|
||||
"""
|
||||
|
||||
if inplace:
|
||||
current_sharding_spec = sharding_spec
|
||||
else:
|
||||
current_sharding_spec = deepcopy(sharding_spec)
|
||||
|
||||
old_dim_partition_dict = current_sharding_spec.dim_partition_dict
|
||||
new_dim_partition_dict = {}
|
||||
|
||||
# assign new dim
|
||||
for old_dim, new_dim in dim_mapping.items():
|
||||
mesh_dims = old_dim_partition_dict.pop(old_dim)
|
||||
new_dim_partition_dict[new_dim] = mesh_dims
|
||||
|
||||
for tensor_dim, mesh_dims in old_dim_partition_dict.items():
|
||||
if tensor_dim in new_dim_partition_dict:
|
||||
raise KeyError(f"There are duplicated entries for the tensor sharding dimension {tensor_dim}")
|
||||
else:
|
||||
new_dim_partition_dict[tensor_dim] = mesh_dims
|
||||
|
||||
# update sharding spec
|
||||
current_sharding_spec.__init__(device_mesh=sharding_spec.device_mesh,
|
||||
entire_shape=physical_shape,
|
||||
dim_partition_dict=new_dim_partition_dict)
|
||||
return current_sharding_spec
|
|
@ -1,3 +1,4 @@
|
|||
from copy import deepcopy
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
|
@ -121,16 +122,12 @@ class ShardingStrategy_V2:
|
|||
communication_cost (TrainCycleItem): Communication cost to complete this strategy. (default to None)
|
||||
memory_cost (TrainCycleItem): Memory cost of the output node using this strategy. (default to None)
|
||||
input_sharding_specs (List(ShardingSpec)): The ShardingSpecs of the input nodes.
|
||||
input_resharding_costs (Dict[int, List[float]]): resharding_cost[i][j] means the cost of i-th argument in the output node argument list
|
||||
with j-th strategy in its strategies_vector transforms to sharding spec wanted in this
|
||||
strategy.(default to None)
|
||||
"""
|
||||
name: str
|
||||
sharding_specs: Dict[OperationData, Union[ShardingSpec, Tuple[ShardingSpec]]] = None
|
||||
compute_cost: TrainCycleItem = None
|
||||
communication_cost: TrainCycleItem = None
|
||||
memory_cost: TrainCycleItem = None
|
||||
input_resharding_costs: Dict[OperationData, List[float]] = None
|
||||
communication_actions: Dict[OperationData, CommSpec] = None
|
||||
resharding_costs: Dict[OperationData, Dict[ShardingSpec, TrainCycleItem]] = None
|
||||
|
||||
|
@ -169,6 +166,26 @@ class ShardingStrategy_V2:
|
|||
return sharding_spec
|
||||
raise KeyError(f"Could not find the ShardingSpec for OperationData with name {name}")
|
||||
|
||||
def clone(self):
|
||||
|
||||
def _deepcopy_dict_vals(data: Dict):
|
||||
return {k: deepcopy(v) for k, v in data.items()}
|
||||
|
||||
sharding_specs = _deepcopy_dict_vals(self.sharding_specs) if self.sharding_specs else None
|
||||
communication_actions = _deepcopy_dict_vals(self.communication_actions) if self.communication_actions else None
|
||||
resharding_costs = _deepcopy_dict_vals(self.resharding_costs) if self.resharding_costs else None
|
||||
compute_cost = deepcopy(self.compute_cost)
|
||||
communication_cost = deepcopy(self.communication_cost)
|
||||
memory_cost = deepcopy(self.memory_cost)
|
||||
|
||||
return ShardingStrategy_V2(name=self.name,
|
||||
sharding_specs=sharding_specs,
|
||||
compute_cost=compute_cost,
|
||||
communication_cost=communication_cost,
|
||||
memory_cost=memory_cost,
|
||||
communication_actions=communication_actions,
|
||||
resharding_costs=resharding_costs)
|
||||
|
||||
|
||||
class StrategiesVector(list):
|
||||
'''
|
||||
|
|
|
@ -6,6 +6,8 @@ from enum import Enum
|
|||
from functools import reduce
|
||||
import operator
|
||||
|
||||
__all__ = ['_DimSpec', 'ShardingException', 'ShardingSpec']
|
||||
|
||||
ALLGATHER_COST = 20
|
||||
SHARD_COST = 5
|
||||
STEP_PENALTY = 6
|
||||
|
@ -136,6 +138,10 @@ class _DimSpec:
|
|||
return difference
|
||||
|
||||
|
||||
class ShardingException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ShardingSpec:
|
||||
'''
|
||||
Sharding spec for a tensor, it contains info of the logical device mesh this tensor belong
|
||||
|
|
|
@ -3,14 +3,15 @@ import torch
|
|||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.dot_handler_v2 import LinearModuleHandler, LinearFunctionHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector, ShardingStrategy_V2
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
|
||||
def test_linear_module_handler():
|
||||
model = nn.Sequential(nn.Linear(16, 32).to('meta'))
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16).to('meta')})
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(2, 2, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
|
@ -34,9 +35,9 @@ def test_linear_module_handler():
|
|||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 16])
|
||||
assert mapping['input'].data.shape == torch.Size([2, 2, 4, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 16])
|
||||
assert mapping['input'].logical_shape == torch.Size([16, 16])
|
||||
|
||||
assert mapping['other'].name == "weight"
|
||||
assert mapping['other'].data.is_meta
|
||||
|
@ -52,11 +53,14 @@ def test_linear_module_handler():
|
|||
|
||||
assert mapping['output'].name == "_0"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 32])
|
||||
assert mapping['output'].data.shape == torch.Size([2, 2, 4, 32])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([16, 32])
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1' in strategy_name_list
|
||||
|
@ -78,6 +82,19 @@ def test_linear_module_handler():
|
|||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy_V2
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('weight')
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name('bias')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('_0')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
|
||||
assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
|
||||
assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1]
|
||||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
def test_linear_function_handler():
|
||||
model = nn.Linear(16, 32).to('meta')
|
||||
|
@ -123,6 +140,8 @@ def test_linear_function_handler():
|
|||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1' in strategy_name_list
|
||||
|
@ -144,6 +163,19 @@ def test_linear_function_handler():
|
|||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy_V2
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('weight')
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name('bias')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('linear')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
|
||||
assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1]
|
||||
assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1]
|
||||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linear_module_handler()
|
||||
|
|
Loading…
Reference in New Issue