mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add output handler and placeholder handler (#1694)
* [autoparallel] add output handler and placeholder handler * Delete test_solver_with_resnet.py * fix test bugspull/1695/head
parent
56088e6d98
commit
42b882ef06
|
@ -5,6 +5,7 @@ from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|||
from typing import Dict, List, Union
|
||||
from ..sharding_strategy import ShardingStrategy_V2, StrategiesVector, OperationData, TrainCycleItem
|
||||
from ..strategy import StrategyGenerator_V2
|
||||
from .._utils import generate_resharding_costs
|
||||
|
||||
|
||||
class NodeHandler(ABC):
|
||||
|
@ -52,19 +53,22 @@ class NodeHandler(ABC):
|
|||
|
||||
# create data structrure to store costs
|
||||
if op_data not in resharding_costs:
|
||||
resharding_costs[op_data] = {}
|
||||
resharding_costs[node] = []
|
||||
|
||||
# for each sharding spec generated by the predecessor's node handler
|
||||
# compute the resharding cost to switch to the sharding spec generated
|
||||
# by the current node handler
|
||||
for prev_sharding_spec in prev_sharding_specs:
|
||||
fwd_cost = shape_consistency_manager.shape_consistency(prev_sharding_spec, current_sharding_spec)
|
||||
bwd_cost = shape_consistency_manager.shape_consistency(current_sharding_spec, prev_sharding_spec)
|
||||
resharding_cost = TrainCycleItem(fwd=fwd_cost, bwd=bwd_cost, total=fwd_cost + bwd_cost)
|
||||
resharding_costs[op_data][prev_sharding_spec] = resharding_cost
|
||||
_, _, resharding_cost = shape_consistency_manager.shape_consistency(prev_sharding_spec,
|
||||
current_sharding_spec)
|
||||
resharding_cost = TrainCycleItem(fwd=resharding_cost["forward"],
|
||||
bwd=resharding_cost["backward"],
|
||||
total=resharding_cost["total"])
|
||||
resharding_costs[node].append(resharding_cost)
|
||||
strategy.resharding_costs = resharding_costs
|
||||
return strategy
|
||||
|
||||
def register_strategy(self, compute_resharding_cost: bool = False) -> StrategiesVector:
|
||||
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
|
||||
"""
|
||||
Register different sharding strategies for the current node.
|
||||
"""
|
||||
|
@ -86,7 +90,8 @@ class NodeHandler(ABC):
|
|||
# compute the resharding costs based on the previous node
|
||||
# strategies if specified
|
||||
if compute_resharding_cost:
|
||||
post_processed_strategies = list(map(self.update_resharding_cost, post_processed_strategies))
|
||||
updated_strategies = map(self.update_resharding_cost, strategies)
|
||||
strategies = list(updated_strategies)
|
||||
|
||||
self.strategies_vector.extend(post_processed_strategies)
|
||||
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
import torch
|
||||
from .node_handler import NodeHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData, StrategiesVector
|
||||
from colossalai.auto_parallel.solver.strategy import StrategyGenerator_V2
|
||||
from colossalai.auto_parallel.solver.strategy.output_generator import OutputGenerator
|
||||
from typing import List, Dict
|
||||
from .registry import operator_registry
|
||||
|
||||
__all__ = ['OuputHandler']
|
||||
|
||||
|
||||
class OuputHandler(NodeHandler):
|
||||
"""
|
||||
A OuputHandler which deals with the sharding strategies for Output Node.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(OutputGenerator(op_data_mapping, self.device_mesh, self.predecessor_node))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
dummy_output = torch.empty(1,).to("meta")
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=dummy_output)
|
||||
|
||||
mapping = {"output": physical_output}
|
||||
for index, input_node in enumerate(self.predecessor_node):
|
||||
if not hasattr(input_node, "_meta_data"):
|
||||
print(input_node.name)
|
||||
physical_inputs = OperationData(name=str(input_node),
|
||||
type=OperationDataType.ARG,
|
||||
data=input_node._meta_data)
|
||||
name_key = f'input_{index}'
|
||||
mapping[name_key] = physical_inputs
|
||||
|
||||
return mapping
|
|
@ -0,0 +1,30 @@
|
|||
import torch
|
||||
from .node_handler import NodeHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData
|
||||
from colossalai.auto_parallel.solver.strategy import StrategyGenerator_V2
|
||||
from colossalai.auto_parallel.solver.strategy.placeholder_generator import PlaceholderGenerator
|
||||
from typing import List, Dict
|
||||
from .registry import operator_registry
|
||||
|
||||
__all__ = ['PlacehodlerHandler']
|
||||
|
||||
|
||||
class PlacehodlerHandler(NodeHandler):
|
||||
"""
|
||||
A PlacehodlerHandler which deals with the sharding strategies for Placeholder Node.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(PlaceholderGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"output": physical_output}
|
||||
|
||||
return mapping
|
|
@ -129,7 +129,7 @@ class ShardingStrategy_V2:
|
|||
communication_cost: TrainCycleItem = None
|
||||
memory_cost: TrainCycleItem = None
|
||||
communication_actions: Dict[OperationData, CommSpec] = None
|
||||
resharding_costs: Dict[OperationData, Dict[ShardingSpec, TrainCycleItem]] = None
|
||||
resharding_costs: Dict[Node, List[TrainCycleItem]] = None
|
||||
|
||||
@property
|
||||
def input_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
import operator
|
||||
from functools import reduce
|
||||
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from .strategy_generator import OutputStrategyGenerator
|
||||
from typing import List
|
||||
from .._utils import exception_handler
|
||||
import copy
|
||||
|
||||
__all__ = ['OutputGenerator']
|
||||
|
||||
|
||||
class OutputGenerator(OutputStrategyGenerator):
|
||||
"""
|
||||
OutputGenerator is a generic class to generate strategies for Output Node.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy_V2):
|
||||
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy_V2):
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
fwd_mem_cost = MemoryCost(activation=0, parameter=0)
|
||||
|
||||
bwd_mem_cost = MemoryCost(activation=0, parameter=0)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=0, parameter=0)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def generate(self):
|
||||
dim_partition_dict_mapping = {
|
||||
"output": {},
|
||||
}
|
||||
for index, _ in enumerate(self.predecessor_nodes):
|
||||
mapping_name = f"input_{index}"
|
||||
dim_partition_dict_mapping[mapping_name] = {}
|
||||
|
||||
communication_action_mapping = {}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
name = f'Replica Output'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return [strategy]
|
|
@ -0,0 +1,60 @@
|
|||
import operator
|
||||
from functools import reduce
|
||||
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from .strategy_generator import StrategyGenerator_V2
|
||||
from typing import List
|
||||
from .._utils import exception_handler
|
||||
import copy
|
||||
|
||||
__all__ = ['PlaceholderGenerator']
|
||||
|
||||
|
||||
class PlaceholderGenerator(StrategyGenerator_V2):
|
||||
"""
|
||||
PlaceholderGenerator is a generic class to generate strategies for placeholder node.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy_V2):
|
||||
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy_V2):
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {'output': self._compute_size_in_bytes(strategy, "output")}
|
||||
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items()])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
|
||||
|
||||
bwd_mem_cost = MemoryCost(activation=0, parameter=0)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def generate(self):
|
||||
dim_partition_dict_mapping = {
|
||||
"output": {},
|
||||
}
|
||||
communication_action_mapping = {}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
name = f'Replica Placeholder'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return [strategy]
|
|
@ -169,3 +169,15 @@ class FollowingStrategyGenerator(StrategyGenerator_V2):
|
|||
self.op_data = operation_data_mapping
|
||||
self.device_mesh = device_mesh
|
||||
self.predecessor_node = predecessor_node
|
||||
|
||||
|
||||
class OutputStrategyGenerator(StrategyGenerator_V2):
|
||||
"""
|
||||
OutputStrategyGenerator is used to generate the sharding strategies for Output Node.
|
||||
"""
|
||||
|
||||
def __init__(self, operation_data_mapping: Dict[str, OperationData], device_mesh: DeviceMesh,
|
||||
predecessor_nodes: List[Node]):
|
||||
self.op_data = operation_data_mapping
|
||||
self.device_mesh = device_mesh
|
||||
self.predecessor_nodes = predecessor_nodes
|
||||
|
|
|
@ -58,7 +58,7 @@ def test_bn_module_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# RS = RS x S
|
||||
|
|
|
@ -68,7 +68,7 @@ def test_2d_device_mesh(module):
|
|||
assert mapping['output'].data.shape == torch.Size([4, 8, 8])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# one batch dim
|
||||
|
@ -138,7 +138,7 @@ def test_1d_device_mesh(module):
|
|||
assert mapping['output'].data.shape == torch.Size([4, 8, 8])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
assert len(strategy_name_list) == 1
|
||||
# one batch dim
|
||||
|
|
|
@ -58,7 +58,7 @@ def test_conv_module_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# SS = SR x RS
|
||||
|
@ -165,7 +165,7 @@ def test_conv_function_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
handler.register_strategy()
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# SS = SR x RS
|
||||
|
|
|
@ -47,13 +47,13 @@ def test_getitem_function_handler():
|
|||
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy()
|
||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
getitem_handler = GetItemHandler(node=getitem_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=getitem_strategies_vector)
|
||||
|
||||
getitem_handler.register_strategy()
|
||||
getitem_handler.register_strategy(compute_resharding_cost=False)
|
||||
# check operation data mapping
|
||||
mapping = getitem_handler.get_operation_data_mapping()
|
||||
|
||||
|
|
|
@ -58,7 +58,7 @@ def test_ln_module_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 16])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# SR = SR x R
|
||||
|
|
|
@ -57,7 +57,7 @@ def test_linear_module_handler():
|
|||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([16, 32])
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
@ -138,7 +138,7 @@ def test_linear_function_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 32])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.output_handler import OuputHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class OutputModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
y = x * 2
|
||||
return x, y
|
||||
|
||||
|
||||
def test_output_handler():
|
||||
model = OutputModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=2] = placeholder[target=x]
|
||||
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
||||
# return (x, mul)
|
||||
graph = tracer.trace(model, meta_args={
|
||||
"x": torch.rand(4, 4, 64, 64).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
output_node = list(graph.nodes)[2]
|
||||
output_strategies_vector = StrategiesVector(output_node)
|
||||
|
||||
# build handler
|
||||
otuput_handler = OuputHandler(node=output_node, device_mesh=device_mesh, strategies_vector=output_strategies_vector)
|
||||
|
||||
otuput_handler.register_strategy(compute_resharding_cost=False)
|
||||
# check operation data mapping
|
||||
mapping = otuput_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['output'].name == "output"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
strategy_name_list = [val.name for val in otuput_handler.strategies_vector]
|
||||
assert "Replica Output" in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_output_handler()
|
|
@ -0,0 +1,58 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.placeholder_handler import PlacehodlerHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class PlaceholderModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input):
|
||||
return input
|
||||
|
||||
|
||||
def test_placeholder_handler():
|
||||
model = PlaceholderModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# return input_1
|
||||
graph = tracer.trace(model, meta_args={
|
||||
"input": torch.rand(4, 4, 64, 64).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
placeholder_node = list(graph.nodes)[0]
|
||||
placeholder_strategies_vector = StrategiesVector(placeholder_node)
|
||||
|
||||
# build handler
|
||||
placeholder_handler = PlacehodlerHandler(node=placeholder_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=placeholder_strategies_vector)
|
||||
|
||||
placeholder_handler.register_strategy(compute_resharding_cost=False)
|
||||
# check operation data mapping
|
||||
mapping = placeholder_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['output'].name == "input_1"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size((4, 4, 64, 64))
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
strategy_name_list = [val.name for val in placeholder_handler.strategies_vector]
|
||||
assert "Replica Placeholder" in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_placeholder_handler()
|
|
@ -46,13 +46,13 @@ def test_reshape_handler():
|
|||
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy()
|
||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
reshape_handler = ReshapeHandler(node=reshape_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=reshape_strategies_vector)
|
||||
|
||||
reshape_handler.register_strategy()
|
||||
reshape_handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = reshape_handler.get_operation_data_mapping()
|
||||
|
|
|
@ -48,13 +48,13 @@ def test_elementwise_handler():
|
|||
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy()
|
||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
relu_handler = UnaryElementwiseHandler(node=relu_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=relu_strategies_vector)
|
||||
|
||||
relu_handler.register_strategy()
|
||||
relu_handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = relu_handler.get_operation_data_mapping()
|
||||
|
|
|
@ -75,7 +75,7 @@ def test_where_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 4, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
handler.register_strategy()
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# 4*3 + 4*3/2*2 + 1
|
||||
assert len(strategy_name_list) == 25
|
||||
|
|
|
@ -1,121 +0,0 @@
|
|||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
||||
from colossalai.auto_parallel.solver.cost_graph import CostGraph
|
||||
from copy import deepcopy
|
||||
from colossalai.auto_parallel.solver import Solver
|
||||
from torchvision.models import resnet34, resnet50
|
||||
from colossalai.auto_parallel.solver.constants import *
|
||||
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
||||
from colossalai.auto_parallel.solver.options import SolverOptions
|
||||
|
||||
|
||||
class ConvModel(nn.Module):
|
||||
|
||||
def __init__(self, c_in, c_out):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3)
|
||||
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3)
|
||||
self.conv3 = nn.Conv2d(c_out, c_out, kernel_size=3)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 2
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = x / 2
|
||||
x = self.conv3(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skip("for higher testing speed")
|
||||
def test_cost_graph():
|
||||
physical_mesh_id = torch.arange(0, 8)
|
||||
mesh_shape = (2, 4)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
# model = ConvModel(16, 32)
|
||||
# input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
||||
model = resnet50(num_classes=100000)
|
||||
input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')}
|
||||
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
|
||||
# %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
|
||||
# %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
|
||||
# %maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
|
||||
# %layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
|
||||
# %layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
|
||||
# %layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
|
||||
# %layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
|
||||
# %layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
|
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
|
||||
# %layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
|
||||
# %layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
|
||||
# %layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
|
||||
# %layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
|
||||
# %layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
|
||||
# %layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
|
||||
# %add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
|
||||
# ...
|
||||
# %avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_2_relu_1,), kwargs = {})
|
||||
# %flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
|
||||
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
|
||||
# return fc
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
liveness_list = graph_analyser.liveness_analysis()
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
||||
|
||||
ret = solver.call_solver_serialized_args()
|
||||
print(ret[0])
|
||||
solver._recover_merged_node_strategy()
|
||||
print(solver.last_s_val)
|
||||
strategies_list = solver.last_s_val
|
||||
|
||||
computation_cost = 0
|
||||
communication_cost = 0
|
||||
communication_cost_bn = 0
|
||||
memory_cost = 0
|
||||
for index, node in enumerate(graph.nodes):
|
||||
if node.op == 'call_module':
|
||||
submod = node.graph.owning_module.get_submodule(node.target)
|
||||
if type(submod) in BATCHNORM_MODULE_OP:
|
||||
communication_cost_bn += node.strategies_vector[strategies_list[index]].communication_cost
|
||||
print(node.name, node.strategies_vector[strategies_list[index]].name)
|
||||
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost
|
||||
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost
|
||||
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost
|
||||
if isinstance(node_memory_cost, tuple):
|
||||
node_memory_cost = node_memory_cost[0]
|
||||
memory_cost += node_memory_cost
|
||||
|
||||
print(f'computation cost is {computation_cost}')
|
||||
print(f'communication cost is {communication_cost}')
|
||||
print(f'memory cost is {memory_cost}')
|
||||
print(f'bn communication cost is {communication_cost_bn}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cost_graph()
|
Loading…
Reference in New Issue