mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add pooling handler (#1690)
* [autoparallel] add pooling handler * polish codepull/1695/head
parent
319d654f79
commit
56088e6d98
|
@ -0,0 +1,40 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from .node_handler import ModuleHandler, NodeHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData
|
||||
from ..strategy import NormalPoolStrategyGenerator, StrategyGenerator_V2
|
||||
from typing import List, Dict
|
||||
from .registry import operator_registry
|
||||
|
||||
__all__ = ['LinearModuleHandler', 'LinearFunctionHandler']
|
||||
|
||||
|
||||
@operator_registry.register(torch.nn.MaxPool1d)
|
||||
@operator_registry.register(torch.nn.MaxPool2d)
|
||||
@operator_registry.register(torch.nn.MaxPool1d)
|
||||
@operator_registry.register(torch.nn.AvgPool1d)
|
||||
@operator_registry.register(torch.nn.AvgPool2d)
|
||||
@operator_registry.register(torch.nn.AvgPool3d)
|
||||
class NormPoolingHandler(ModuleHandler):
|
||||
"""
|
||||
A NormPoolingHandler which deals with the sharding strategies for nn.MaxPoolxd module.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(NormalPoolStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data)
|
||||
physical_weight_operand = OperationData(name="kernel", type=OperationDataType.ARG, data=self.module.kernel_size)
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_weight_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
|
@ -7,10 +7,11 @@ from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator
|
|||
from .layer_norm_generator import LayerNormGenerator
|
||||
from .where_generator import WhereGenerator
|
||||
from .reshape_generator import ReshapeGenerator
|
||||
from .normal_pooling_generator import NormalPoolStrategyGenerator
|
||||
|
||||
__all__ = [
|
||||
'StrategyGenerator_V2', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator',
|
||||
'LinearProjectionStrategyGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator',
|
||||
'UnaryElementwiseGenerator', 'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator',
|
||||
'TensorTupleStrategyGenerator', 'LayerNormGenerator', "WhereGenerator", 'ReshapeGenerator'
|
||||
'TensorTupleStrategyGenerator', 'LayerNormGenerator', "WhereGenerator", 'ReshapeGenerator', 'NormalPoolStrategyGenerator'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,117 @@
|
|||
import operator
|
||||
from functools import reduce
|
||||
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from .strategy_generator import StrategyGenerator_V2
|
||||
from typing import List
|
||||
from .._utils import exception_handler, enumerate_all_possible_1d_sharding, enumerate_all_possible_2d_sharding
|
||||
import copy
|
||||
|
||||
|
||||
class NormalPoolStrategyGenerator(StrategyGenerator_V2):
|
||||
"""
|
||||
NormalPoolStrategyGenerator is a generic class to generate strategies for pool operation like MaxPoolxd.
|
||||
The reason we call this normal pool is AvgPoolxd and MaxPoolxd are taking the kernel size element from image,
|
||||
and reduce them depening on the operation type.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
'''
|
||||
In sanity check, we need make sure the input data having correct dimension size.
|
||||
For Pool1d, the dim of input data should be 3([N, C, L]).
|
||||
For Pool2d, the dim of input data should be 4([N, C, H, W]).
|
||||
For Pool3d, the dim of input data should be 5([N, C, H, W, D]).
|
||||
'''
|
||||
input_op_data = self.op_data['input']
|
||||
assert input_op_data.dim() in (3, 4,
|
||||
5), f'We suppose the dim of input fed into Pool op should in range of [3, 5].'
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
|
||||
'''
|
||||
Compute the computation cost per device with this specific strategy.
|
||||
|
||||
Note: compute_cost need to be devided by TFLOPS, now it just shows the computation size.
|
||||
'''
|
||||
# TODO: compute_cost need to be devided by TFLOPS, now it just shows the computation size.
|
||||
# 1D: (Lout) * N * C * kernel
|
||||
# 2D: (H * W) * N * Cout * Cin * kernel
|
||||
# 3D: (H * W * D) * N * Cout * Cin * kernel
|
||||
sharded_output_shape = strategy.sharding_specs[self.op_data['output']].get_sharded_shape_per_device()
|
||||
sharded_input_shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
|
||||
|
||||
kernel_size = self.op_data["other"].data
|
||||
if isinstance(kernel_size, int):
|
||||
kernel_size = [kernel_size] * (len(sharded_output_shape) - 2)
|
||||
kernel_size_product = reduce(operator.mul, kernel_size)
|
||||
output_size_product = reduce(operator.mul, sharded_output_shape)
|
||||
input_size_product = reduce(operator.mul, sharded_input_shape)
|
||||
|
||||
forward_compute_cost = output_size_product * kernel_size_product
|
||||
backward_compute_cost = input_size_product * kernel_size_product
|
||||
|
||||
total_compute_cost = forward_compute_cost + backward_compute_cost
|
||||
|
||||
compute_cost = TrainCycleItem(fwd=forward_compute_cost, bwd=backward_compute_cost, total=total_compute_cost)
|
||||
return compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy_V2) -> ShardingStrategy_V2:
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items()])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items()])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=0)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost, parameter=0)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def _generate_strategy_with_dim_partition(self, dim_partition):
|
||||
dim_partition_dict_mapping = {"input": dim_partition, "output": dim_partition}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}'
|
||||
communication_action_mapping = {}
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
return strategy
|
||||
|
||||
def enumerate_all_possible_batch_dimensions_dim_partition(self, mesh_dim_0, mesh_dim_1):
|
||||
dim_partition_list = []
|
||||
dim_partition_list.extend(enumerate_all_possible_1d_sharding(mesh_dim_0, 2))
|
||||
dim_partition_list.extend(enumerate_all_possible_1d_sharding(mesh_dim_1, 2))
|
||||
dim_partition_list.extend(enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, 2))
|
||||
# append {} for non_split case
|
||||
dim_partition_list.append({})
|
||||
|
||||
return dim_partition_list
|
||||
|
||||
def generate(self) -> List[ShardingStrategy_V2]:
|
||||
strategy_list = []
|
||||
|
||||
dim_partition_list = self.enumerate_all_possible_batch_dimensions_dim_partition(0, 1)
|
||||
for dim_partition in dim_partition_list:
|
||||
strategy = self._generate_strategy_with_dim_partition(dim_partition)
|
||||
strategy_list.append(strategy)
|
||||
|
||||
for strategy in strategy_list:
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return strategy_list
|
|
@ -0,0 +1,54 @@
|
|||
from colossalai.fx.tracer.meta_patch.patched_module import linear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.normal_pooling_handler import NormPoolingHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
def test_norm_pool_handler():
|
||||
model = nn.Sequential(nn.MaxPool2d(4, padding=1).to('meta'))
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %_0 : [#users=1] = call_module[target=0](args = (%input_1,), kwargs = {})
|
||||
# return _0
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 4, 64, 64).to('meta')})
|
||||
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
conv_mod_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(conv_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = NormPoolingHandler(node=conv_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 64, 64])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 4, 64, 64])
|
||||
|
||||
assert mapping['output'].name == "_0"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 4, 16, 16])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
assert len(strategy_name_list) == 9
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_norm_pool_handler()
|
Loading…
Reference in New Issue