[autoparallel] where_handler_v2 (#1688)

* where generator

* [autoparallel] where_handler_v2
pull/1694/head
YuliangLiu0306 2022-10-13 11:02:22 +08:00 committed by GitHub
parent 31d2f03d27
commit 319d654f79
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 274 additions and 2 deletions

View File

@ -0,0 +1,87 @@
import torch
from .node_handler import NodeHandler
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData, StrategiesVector
from ..strategy import WhereGenerator, StrategyGenerator_V2
from .broadcast import recover_sharding_spec_for_broadcast_shape
from typing import List, Dict
from .registry import operator_registry
import operator
import copy
__all__ = ['WhereHandler']
@operator_registry.register(torch.where)
class WhereHandler(NodeHandler):
"""
A WhereHandler which deals with the sharding strategies for torch.where.
"""
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
logical_op_data_mapping, _ = self.get_operation_data_mapping()
generators = []
generators.append(WhereGenerator(logical_op_data_mapping, self.device_mesh))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# use transposed shape for strategies
# the strategies will be transformed back to its original shape in self.post_process
physical_condition_operand = OperationData(name=str(self.node.args[0]),
type=OperationDataType.ARG,
data=self.node.args[0]._meta_data)
physical_x_operand = OperationData(name=str(self.node.args[1]),
type=OperationDataType.ARG,
data=self.node.args[1]._meta_data)
physical_y_operand = OperationData(name=str(self.node.args[2]),
type=OperationDataType.ARG,
data=self.node.args[2]._meta_data)
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
physical_mapping = {
"condition": physical_condition_operand,
"x": physical_x_operand,
"y": physical_y_operand,
"output": physical_output
}
logical_shape_for_all = self.node._meta_data.shape
logical_mapping = {}
for key, physical_operand in physical_mapping.items():
logical_mapping[key] = self.convert_physical_operand_to_logical_operand(physical_operand,
logical_shape_for_all)
return logical_mapping, physical_mapping
def convert_physical_operand_to_logical_operand(self, physical_operand, target_shape):
logical_operand = copy.deepcopy(physical_operand)
logical_operand.logical_shape = target_shape
return logical_operand
def register_strategy(self, compute_resharding_cost: bool = False) -> StrategiesVector:
"""
Register different sharding strategies for the current node.
"""
strategy_generators = self.get_strategy_generator()
for generator in strategy_generators:
strategies = generator.generate()
strategies_vector = map(self.post_process, strategies)
# compute the resharding costs based on the previous node
# strategies if specified
if compute_resharding_cost:
strategies = list(map(self.update_resharding_cost, strategies))
self.strategies_vector.extend(strategies)
self.strategies_vector = list(strategies_vector)
return self.strategies_vector
def post_process(self, strategy: ShardingStrategy_V2):
logical_op_data_mapping, physical_op_data_mapping = self.get_operation_data_mapping()
for key in logical_op_data_mapping.keys():
logical_sharding_spec = strategy.sharding_specs[logical_op_data_mapping[key]]
logical_shape = logical_op_data_mapping[key].logical_shape
physical_shape = physical_op_data_mapping[key].logical_shape
physical_sharding_spec = recover_sharding_spec_for_broadcast_shape(logical_sharding_spec, logical_shape,
physical_shape)
strategy.sharding_specs.pop(logical_op_data_mapping[key])
strategy.sharding_specs[physical_op_data_mapping[key]] = physical_sharding_spec
strategy.name = f"{strategy.sharding_specs[physical_op_data_mapping['output']].sharding_sequence} = {strategy.sharding_specs[physical_op_data_mapping['condition']].sharding_sequence} x {strategy.sharding_specs[physical_op_data_mapping['x']].sharding_sequence} x {strategy.sharding_specs[physical_op_data_mapping['y']].sharding_sequence}"
return strategy

View File

@ -5,11 +5,12 @@ from .batch_norm_generator import BatchNormStrategyGenerator
from .unary_elementwise_generator import UnaryElementwiseGenerator
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
from .layer_norm_generator import LayerNormGenerator
from .where_generator import WhereGenerator
from .reshape_generator import ReshapeGenerator
__all__ = [
'StrategyGenerator_V2', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator',
'LinearProjectionStrategyGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator',
'UnaryElementwiseGenerator', 'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator',
'TensorTupleStrategyGenerator', 'LayerNormGenerator', 'ReshapeGenerator'
'TensorTupleStrategyGenerator', 'LayerNormGenerator', "WhereGenerator", 'ReshapeGenerator'
]

View File

@ -163,7 +163,7 @@ class LayerNormGenerator(StrategyGenerator_V2):
def generate(self):
'''
Generate every possible strategies for a BatchNorm node, and record all strategies into the strategies_vector.
Generate every possible strategies for a LayerNorm node, and record all strategies into the strategies_vector.
'''
strategy_list = []
input_data_dim = len(self.op_data["input"].logical_shape)

View File

@ -0,0 +1,99 @@
import operator
from functools import reduce
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
from colossalai.tensor.shape_consistency import CollectiveCommPattern
from .strategy_generator import StrategyGenerator_V2, FollowingStrategyGenerator
from typing import List
from .._utils import exception_handler, enumerate_all_possible_1d_sharding, enumerate_all_possible_2d_sharding
import copy
__all__ = ['WhereGenerator']
class WhereGenerator(StrategyGenerator_V2):
"""
WhereGenerator is a generic class to generate strategies for Where operation.
"""
def validate(self) -> bool:
return super().validate()
def update_compute_cost(self, strategy: ShardingStrategy_V2):
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
strategy.compute_cost = compute_cost
def update_memory_cost(self, strategy: ShardingStrategy_V2):
'''
Compute the memory cost per device with this specific strategy.
'''
forward_size_mapping = {
'condition': self._compute_size_in_bytes(strategy, "condition"),
'x': self._compute_size_in_bytes(strategy, "x"),
'y': self._compute_size_in_bytes(strategy, "y"),
'output': self._compute_size_in_bytes(strategy, "output")
}
backward_size_mapping = copy.deepcopy(forward_size_mapping)
backward_size_mapping.pop("output")
# compute fwd cost incurred
# fwd_cost = condition + x + y + output
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items()])
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
# compute bwd cost incurred
# bwd_cost = condition_grad + x_grad + y_grad
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items()])
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=0)
# compute total cost
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost, parameter=0)
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
strategy.memory_cost = memory_cost
def _generate_strategy_with_dim_partition(self, dim_partition):
dim_partition_dict_mapping = {
"condition": dim_partition,
"x": dim_partition,
"y": dim_partition,
"output": dim_partition
}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["condition"].sharding_sequence} x {sharding_spec_mapping["x"].sharding_sequence} x {sharding_spec_mapping["y"].sharding_sequence}'
communication_action_mapping = {}
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
return strategy
def enumerate_all_possible_output_spec(self, mesh_dim_0, mesh_dim_1, dimension_length):
dim_partition_list = []
dim_partition_list.extend(enumerate_all_possible_1d_sharding(mesh_dim_0, dimension_length))
dim_partition_list.extend(enumerate_all_possible_1d_sharding(mesh_dim_1, dimension_length))
dim_partition_list.extend(enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dimension_length))
# append {} for non_split case
dim_partition_list.append({})
return dim_partition_list
def generate(self):
'''
Generate every possible strategies for a where node, and record all strategies into the strategies_vector.
'''
strategy_list = []
dimension_length = len(self.op_data["output"].logical_shape)
dim_partition_list = self.enumerate_all_possible_output_spec(0, 1, dimension_length)
for dim_partition in dim_partition_list:
strategy = self._generate_strategy_with_dim_partition(dim_partition)
strategy_list.append(strategy)
for strategy in strategy_list:
self.update_communication_cost(strategy)
self.update_compute_cost(strategy)
self.update_memory_cost(strategy)
return strategy_list

View File

@ -0,0 +1,85 @@
from colossalai.fx.tracer.meta_patch.patched_module import linear
import torch
import torch.nn as nn
from colossalai.fx import ColoTracer, ColoGraphModule
from colossalai.auto_parallel.solver.op_handler.where_handler_v2 import WhereHandler
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
class ConvModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, condition, x, y):
output = torch.where(condition, x, y)
return output
def test_where_handler():
model = ConvModel()
tracer = ColoTracer()
# graph():
# %condition : torch.Tensor [#users=1] = placeholder[target=condition]
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %y : torch.Tensor [#users=1] = placeholder[target=y]
# %where : [#users=1] = call_function[target=torch.where](args = (%condition, %x, %y), kwargs = {})
# return where
graph = tracer.trace(model,
meta_args={
"condition": torch.rand(4, 4, 64, 64).to('meta'),
"x": torch.rand(4, 1, 64, 64).to('meta'),
"y": torch.rand(1, 4, 64, 64).to('meta')
})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
where_node = list(graph.nodes)[3]
strategies_vector = StrategiesVector(where_node)
# build handler
handler = WhereHandler(node=where_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping, _ = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['condition'].name == "condition"
assert mapping['condition'].data.is_meta
assert mapping['condition'].data.shape == torch.Size([4, 4, 64, 64])
assert mapping['condition'].type == OperationDataType.ARG
assert mapping['condition'].logical_shape == torch.Size([4, 4, 64, 64])
assert mapping['x'].name == "x"
assert mapping['x'].data.is_meta
assert mapping['x'].data.shape == torch.Size([4, 1, 64, 64])
assert mapping['x'].type == OperationDataType.ARG
assert mapping['x'].logical_shape == torch.Size([4, 4, 64, 64])
assert mapping['y'].name == "y"
assert mapping['y'].data.is_meta
assert mapping['y'].data.shape == torch.Size([1, 4, 64, 64])
assert mapping['y'].type == OperationDataType.ARG
assert mapping['y'].logical_shape == torch.Size([4, 4, 64, 64])
assert mapping['output'].name == "where"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 4, 64, 64])
assert mapping['output'].type == OperationDataType.OUTPUT
handler.register_strategy()
strategy_name_list = [val.name for val in strategies_vector]
# 4*3 + 4*3/2*2 + 1
assert len(strategy_name_list) == 25
if __name__ == '__main__':
test_where_handler()