mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add following node generator (#1673)
* [autoparallel] add following node generator * polish code * polish code * update name of argumentspull/1674/head^2
parent
52fda88796
commit
f6c6a932b8
|
@ -0,0 +1,39 @@
|
|||
import torch
|
||||
from .node_handler import NodeHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData, StrategiesVector
|
||||
from ..strategy import TensorStrategyGenerator, TensorTupleStrategyGenerator, StrategyGenerator_V2
|
||||
from typing import List, Dict
|
||||
from .registry import operator_registry
|
||||
import operator
|
||||
|
||||
__all__ = ['GetItemHandler']
|
||||
|
||||
|
||||
@operator_registry.register(operator.getitem)
|
||||
class GetItemHandler(NodeHandler):
|
||||
"""
|
||||
A GetItemHandler which deals with the sharding strategies for operator.getitem.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
if isinstance(op_data_mapping["input"].data, torch.Tensor):
|
||||
generators.append(TensorStrategyGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
|
||||
else:
|
||||
generators.append(TensorTupleStrategyGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
|
||||
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data)
|
||||
physical_other_operand = OperationData(name="index", type=OperationDataType.ARG, data=self.node.args[1])
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"input": physical_input_operand, "index": physical_other_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
|
@ -63,24 +63,27 @@ class OperationData:
|
|||
Args:
|
||||
name (str): the name of the operation-related data
|
||||
type (OperationDataType): the type of the operation data
|
||||
data (torch.Tensor): the value for this data, usually it is a meta tensor.
|
||||
data (Any): the value for this data, usually it is a meta tensor.
|
||||
logical_shape (Tuple[int]): the logical shape of the data, it can be different from the its actual shape in memory.
|
||||
"""
|
||||
name: str
|
||||
type: OperationDataType
|
||||
data: torch.Tensor
|
||||
data: Any
|
||||
logical_shape: Tuple[int] = None
|
||||
|
||||
def __post_init__(self):
|
||||
# if no logical shape is specified, use the data shape as the logical shape
|
||||
if self.logical_shape is None:
|
||||
if self.logical_shape is None and isinstance(self.data, torch.Tensor):
|
||||
self.logical_shape = self.data.shape
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f'OperationData(name={self.name}, type={self.type})'
|
||||
|
||||
def __eq__(self, other) -> bool:
|
||||
return other.name == self.name
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(f'{self.name}-{self.type}')
|
||||
return hash(f'{self.name}')
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -123,7 +126,7 @@ class ShardingStrategy_V2:
|
|||
strategy.(default to None)
|
||||
"""
|
||||
name: str
|
||||
sharding_specs: Dict[OperationData, ShardingSpec] = None
|
||||
sharding_specs: Dict[OperationData, Union[ShardingSpec, Tuple[ShardingSpec]]] = None
|
||||
compute_cost: TrainCycleItem = None
|
||||
communication_cost: TrainCycleItem = None
|
||||
memory_cost: TrainCycleItem = None
|
||||
|
|
|
@ -2,10 +2,12 @@ from .strategy_generator import StrategyGenerator_V2
|
|||
from .matmul_strategy_generator import DotProductStrategyGenerator, MatVecStrategyGenerator, LinearProjectionStrategyGenerator, BatchedMatMulStrategyGenerator
|
||||
from .conv_strategy_generator import ConvStrategyGenerator
|
||||
from .batch_norm_generator import BatchNormStrategyGenerator
|
||||
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
|
||||
from .layer_norm_generator import LayerNormGenerator
|
||||
|
||||
__all__ = [
|
||||
'StrategyGenerator_V2', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator',
|
||||
'LinearProjectionStrategyGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator',
|
||||
'BatchNormStrategyGenerator', 'LayerNormGenerator'
|
||||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||
'LayerNormGenerator'
|
||||
]
|
||||
|
|
|
@ -86,12 +86,12 @@ class BatchNormStrategyGenerator(StrategyGenerator_V2):
|
|||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad + other_grad + bias_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_activation_cost)
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_activation_cost)
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
|
@ -288,4 +288,9 @@ class BatchNormStrategyGenerator(StrategyGenerator_V2):
|
|||
# S01R = S01R x R WITH SYNC_BN
|
||||
strategy_list.append(self.split_input_batch_1d(0, 1))
|
||||
|
||||
for strategy in strategy_list:
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return strategy_list
|
||||
|
|
|
@ -91,12 +91,12 @@ class ConvStrategyGenerator(StrategyGenerator_V2):
|
|||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad + other_grad + bias_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_activation_cost)
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_activation_cost)
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
|
|
|
@ -0,0 +1,147 @@
|
|||
import operator
|
||||
from functools import reduce
|
||||
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from .strategy_generator import FollowingStrategyGenerator
|
||||
from typing import List
|
||||
from .._utils import exception_handler
|
||||
import copy
|
||||
|
||||
__all__ = ['GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator']
|
||||
|
||||
|
||||
class GetItemStrategyGenerator(FollowingStrategyGenerator):
|
||||
"""
|
||||
GetItemStrategyGenerator is a generic class to generate strategies for operator.getitem.
|
||||
The operation data is defined as `output = input[other]`.
|
||||
|
||||
There are mainly three use cases:
|
||||
1. args_0._meta_data: torch.Tensor, args_1._meta_data: int
|
||||
2. args_0._meta_data: torch.Tensor, args_1._meta_data: slice
|
||||
3. args_0._meta_data: Tuple[torch.Tensor], args_1._meta_data: int
|
||||
"""
|
||||
|
||||
@property
|
||||
def has_bias(self):
|
||||
return 'bias' in self.op_data
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
|
||||
return TrainCycleItem(fwd=10, bwd=10, total=20)
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
return super().update_memory_cost(strategy)
|
||||
|
||||
|
||||
class TensorStrategyGenerator(GetItemStrategyGenerator):
|
||||
'''
|
||||
Deal with case 1 and 2.
|
||||
'''
|
||||
|
||||
def generate(self):
|
||||
strategy_list = []
|
||||
for strategy in self.predecessor_node.strategies_vector:
|
||||
dim_partition_dict_mapping = {}
|
||||
communication_action_mapping = {}
|
||||
dim_partition_dict_for_input = strategy.output_sharding_specs[self.op_data["input"]].dim_partition_dict
|
||||
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
|
||||
gather_input = 0 in dim_partition_dict_for_input
|
||||
if gather_input:
|
||||
logical_process_axis = dim_partition_dict_for_output.pop(0)
|
||||
|
||||
shift_dim_partition_dict_for_output = {}
|
||||
for dim, mesh_dim_list in dim_partition_dict_for_output.items():
|
||||
shift_dim_partition_dict_for_output[dim - 1] = mesh_dim_list
|
||||
dim_partition_dict_for_output = shift_dim_partition_dict_for_output
|
||||
dim_partition_dict_mapping = {
|
||||
"input": dim_partition_dict_for_input,
|
||||
"output": dim_partition_dict_for_output,
|
||||
}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
if gather_input:
|
||||
input_communication_spec = self.get_communication_spec(
|
||||
sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
||||
logical_process_axis=logical_process_axis)
|
||||
communication_action_mapping["input"] = input_communication_spec
|
||||
|
||||
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
strategy_list.append(strategy)
|
||||
|
||||
for strategy in strategy_list:
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return strategy_list
|
||||
|
||||
|
||||
class TensorTupleStrategyGenerator(GetItemStrategyGenerator):
|
||||
'''
|
||||
Deal with case 3.
|
||||
'''
|
||||
|
||||
def generate(self):
|
||||
strategy_list = []
|
||||
index = self.op_data["index"].data
|
||||
|
||||
for strategy in self.predecessor_node.strategies_vector:
|
||||
# the sharding spec for input in this case is a tuple of ShardingSpec.
|
||||
sharding_spec_for_input = strategy.output_sharding_specs[self.op_data["input"]]
|
||||
dim_partition_dict_for_output = sharding_spec_for_input[index].dim_partition_dict
|
||||
dim_partition_dict_mapping = {}
|
||||
communication_action_mapping = {}
|
||||
dim_partition_dict_mapping = {
|
||||
"output": dim_partition_dict_for_output,
|
||||
}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
sharding_spec_mapping["input"] = sharding_spec_for_input
|
||||
|
||||
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence}'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
strategy_list.append(strategy)
|
||||
|
||||
for strategy in strategy_list:
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return strategy_list
|
|
@ -8,6 +8,8 @@ from colossalai.tensor.sharding_spec import ShardingSpec
|
|||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from typing import Dict, List, Union, Any
|
||||
from ..sharding_strategy import OperationData, ShardingStrategy_V2, TrainCycleItem, OperationDataType
|
||||
from torch.fx import Node
|
||||
import copy
|
||||
|
||||
|
||||
class StrategyGenerator_V2(ABC):
|
||||
|
@ -72,10 +74,6 @@ class StrategyGenerator_V2(ABC):
|
|||
"""
|
||||
A factory method to produce a CommSpec object.
|
||||
"""
|
||||
# use flatten device mesh the same action is applied to two axes
|
||||
if isinstance(logical_process_axis, list) and len(logical_process_axis) == 2:
|
||||
sharding_spec.device_mesh = sharding_spec.device_mesh.flatten()
|
||||
logical_process_axis = 0
|
||||
return CommSpec(comm_pattern=communication_pattern,
|
||||
sharding_spec=sharding_spec,
|
||||
logical_process_axis=logical_process_axis)
|
||||
|
@ -150,3 +148,17 @@ class StrategyGenerator_V2(ABC):
|
|||
If True, means this generator can be used for the current operation.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class FollowingStrategyGenerator(StrategyGenerator_V2):
|
||||
"""
|
||||
FollowingStrategyGenerator is used to generate the sharding strategies which depends on its predecessor node.
|
||||
|
||||
TODO: remove the original strategy_generator.py after refactoring
|
||||
"""
|
||||
|
||||
def __init__(self, operation_data_mapping: Dict[str, OperationData], device_mesh: DeviceMesh,
|
||||
predecessor_node: Node):
|
||||
self.op_data = operation_data_mapping
|
||||
self.device_mesh = device_mesh
|
||||
self.predecessor_node = predecessor_node
|
||||
|
|
|
@ -165,7 +165,7 @@ def test_conv_function_handler():
|
|||
assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# SS = SR x RS
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
from colossalai.fx.tracer.meta_patch.patched_module import linear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.getitem_handler import GetItemHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.conv_handler_v2 import ConvFunctionHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class GetItemModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input, other):
|
||||
conv_node = nn.functional.conv2d(input, other)
|
||||
x = conv_node[1]
|
||||
return x
|
||||
|
||||
|
||||
def test_getitem_function_handler():
|
||||
model = GetItemModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
|
||||
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%conv2d, 1), kwargs = {})
|
||||
# return getitem
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(4, 4, 64, 64).to('meta'),
|
||||
"other": torch.rand(4, 16, 3, 3).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
conv_mod_node = list(graph.nodes)[2]
|
||||
getitem_mod_node = list(graph.nodes)[3]
|
||||
getitem_strategies_vector = StrategiesVector(getitem_mod_node)
|
||||
conv_strategies_vector = StrategiesVector(conv_mod_node)
|
||||
|
||||
# build handler
|
||||
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy()
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
getitem_handler = GetItemHandler(node=getitem_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=getitem_strategies_vector)
|
||||
|
||||
getitem_handler.register_strategy()
|
||||
# check operation data mapping
|
||||
mapping = getitem_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "conv2d"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 62, 62])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 4, 62, 62])
|
||||
|
||||
assert mapping['index'].name == "index"
|
||||
assert isinstance(mapping['index'].data, int)
|
||||
assert mapping['index'].type == OperationDataType.ARG
|
||||
|
||||
assert mapping['output'].name == "getitem"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 62, 62])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
# getitem is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
||||
assert len(getitem_strategies_vector) == len(conv_strategies_vector)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_getitem_function_handler()
|
Loading…
Reference in New Issue