mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add layer norm handler v2 (#1671)
* [autoparallel] add layer norm handler v2 * polish code * polish codepull/1673/head
parent
87c5ad352a
commit
52fda88796
|
@ -7,8 +7,11 @@ from .bcast_op_handler import BcastOpHandler
|
|||
from .embedding_handler import EmbeddingHandler
|
||||
from .unary_elementwise_handler import UnaryElementwiseHandler
|
||||
from .dot_handler_v2 import LinearFunctionHandler, LinearModuleHandler
|
||||
from .layer_norm_handler_v2 import LayerNormModuleHandler
|
||||
from .batch_norm_handler_v2 import BatchNormModuleHandler
|
||||
|
||||
__all__ = [
|
||||
'OperatorHandler', 'DotHandler', 'ConvHandler', 'BatchNormHandler', 'ReshapeHandler', 'BcastOpHandler',
|
||||
'UnaryElementwiseHandler', 'EmbeddingHandler', 'LinearFunctionHandler', 'LinearModuleHandler'
|
||||
'UnaryElementwiseHandler', 'EmbeddingHandler', 'LinearFunctionHandler', 'LinearModuleHandler',
|
||||
'LayerNormModuleHandler', 'BatchNormModuleHandler'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
import torch
|
||||
from .node_handler import ModuleHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData
|
||||
from ..strategy import LayerNormGenerator, StrategyGenerator_V2
|
||||
from typing import List, Dict
|
||||
from .registry import operator_registry
|
||||
|
||||
__all__ = ['LayerNormModuleHandler']
|
||||
|
||||
|
||||
@operator_registry.register(torch.nn.LayerNorm)
|
||||
class LayerNormModuleHandler(ModuleHandler):
|
||||
"""
|
||||
A LayerNormModuleHandler which deals with the sharding strategies for nn.LayerNorm module.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(LayerNormGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data)
|
||||
physical_other_operand = OperationData(name="weight",
|
||||
type=OperationDataType.PARAM,
|
||||
data=self.named_parameters['weight'],
|
||||
logical_shape=self.named_parameters['weight'].shape)
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
|
||||
|
||||
if self.named_parameters['bias'] is not None:
|
||||
physical_bias_operand = OperationData(name="bias",
|
||||
type=OperationDataType.PARAM,
|
||||
data=self.named_parameters['bias'])
|
||||
mapping['bias'] = physical_bias_operand
|
||||
return mapping
|
|
@ -2,9 +2,10 @@ from .strategy_generator import StrategyGenerator_V2
|
|||
from .matmul_strategy_generator import DotProductStrategyGenerator, MatVecStrategyGenerator, LinearProjectionStrategyGenerator, BatchedMatMulStrategyGenerator
|
||||
from .conv_strategy_generator import ConvStrategyGenerator
|
||||
from .batch_norm_generator import BatchNormStrategyGenerator
|
||||
from .layer_norm_generator import LayerNormGenerator
|
||||
|
||||
__all__ = [
|
||||
'StrategyGenerator_V2', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator',
|
||||
'LinearProjectionStrategyGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator',
|
||||
'BatchNormStrategyGenerator'
|
||||
'BatchNormStrategyGenerator', 'LayerNormGenerator'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,187 @@
|
|||
import operator
|
||||
from functools import reduce
|
||||
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from .strategy_generator import StrategyGenerator_V2
|
||||
from typing import List
|
||||
from .._utils import exception_handler, enumerate_all_possible_1d_sharding, enumerate_all_possible_2d_sharding
|
||||
import copy
|
||||
|
||||
__all__ = ['LayerNormGenerator']
|
||||
|
||||
|
||||
class LayerNormGenerator(StrategyGenerator_V2):
|
||||
"""
|
||||
LayerNormGenerator is a generic class to generate strategies for LayerNorm operation.
|
||||
The operation data is defined as `output = input x other + bias`.
|
||||
"""
|
||||
|
||||
@property
|
||||
def has_bias(self):
|
||||
return 'bias' in self.op_data
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
|
||||
'''
|
||||
Compute the computation cost per device with this specific strategy.
|
||||
|
||||
Note: compute_cost need to be devided by TFLOPS, now it just shows the computation size.
|
||||
'''
|
||||
# TODO: compute_cost need to be devided by TFLOPS, now it just shows the computation size.
|
||||
# TODO: a constant coefficient need to be added.
|
||||
|
||||
sharded_input_shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
|
||||
sharded_weight_shape = strategy.sharding_specs[self.op_data['other']].get_sharded_shape_per_device()
|
||||
if self.has_bias:
|
||||
# bias add is an element wise operation, so the cost is equal to product of output shape.
|
||||
bias_compute_cost = reduce(operator.mul, sharded_weight_shape)
|
||||
# in LayerNorm context, batch dimensions mean all the dimensions do not join the normalization.
|
||||
input_batch_shape = sharded_input_shape[:-len(sharded_weight_shape)]
|
||||
input_batch_product = reduce(operator.mul, input_batch_shape, 1)
|
||||
norm_kernel_product = reduce(operator.mul, sharded_weight_shape, 1)
|
||||
forward_compute_cost = input_batch_product * norm_kernel_product
|
||||
backward_activation_compute_cost = input_batch_product * norm_kernel_product
|
||||
# To compute gradient of on norm kernel element requires input_batch_product times computation, so
|
||||
# the total cost is input_batch_product * norm_kernel_product
|
||||
backward_weight_compute_cost = input_batch_product * norm_kernel_product
|
||||
backward_compute_cost = backward_activation_compute_cost + backward_weight_compute_cost
|
||||
if self.has_bias:
|
||||
forward_compute_cost += bias_compute_cost
|
||||
backward_compute_cost += bias_compute_cost
|
||||
total_compute_cost = forward_compute_cost + backward_compute_cost
|
||||
compute_cost = TrainCycleItem(fwd=forward_compute_cost, bwd=backward_compute_cost, total=total_compute_cost)
|
||||
return compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'other': self._compute_size_in_bytes(strategy, "other"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
if self.has_bias:
|
||||
bias_size = self._compute_size_in_bytes(strategy, "bias")
|
||||
forward_size_mapping['bias'] = bias_size
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + other + bias + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad + other_grad + bias_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def _generate_strategy_with_dim_partition(self, dim_partition):
|
||||
dim_partition_dict_mapping = {
|
||||
"input": dim_partition,
|
||||
"other": {},
|
||||
"output": dim_partition,
|
||||
}
|
||||
if self.has_bias:
|
||||
dim_partition_dict_mapping["bias"] = {}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
name = f'{sharding_spec_mapping["output"].sharding_sequence} = {sharding_spec_mapping["input"].sharding_sequence} x {sharding_spec_mapping["other"].sharding_sequence}'
|
||||
total_mesh_dim_list = []
|
||||
for mesh_dim_list in dim_partition.values():
|
||||
total_mesh_dim_list.extend(mesh_dim_list)
|
||||
communication_action_mapping = {}
|
||||
|
||||
other_comm_spec = self.get_communication_spec(
|
||||
sharding_spec=sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=total_mesh_dim_list)
|
||||
communication_action_mapping["other"] = other_comm_spec
|
||||
|
||||
if self.has_bias:
|
||||
bias_comm_spec = self.get_communication_spec(
|
||||
sharding_spec=sharding_spec_mapping["bias"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=total_mesh_dim_list)
|
||||
communication_action_mapping["bias"] = bias_comm_spec
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
return strategy
|
||||
|
||||
def split_input_batch_single_mesh_dim(self, mesh_dim_0, batch_dimension_length):
|
||||
strategy_list = []
|
||||
dim_partition_list = enumerate_all_possible_1d_sharding(mesh_dim_0, batch_dimension_length)
|
||||
for dim_partition in dim_partition_list:
|
||||
strategy = self._generate_strategy_with_dim_partition(dim_partition)
|
||||
strategy_list.append(strategy)
|
||||
return strategy_list
|
||||
|
||||
def split_input_batch_both_mesh_dim(self, mesh_dim_0, mesh_dim_1, batch_dimension_length):
|
||||
strategy_list = []
|
||||
dim_partition_list = enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, batch_dimension_length)
|
||||
for dim_partition in dim_partition_list:
|
||||
strategy = self._generate_strategy_with_dim_partition(dim_partition)
|
||||
strategy_list.append(strategy)
|
||||
return strategy_list
|
||||
|
||||
def non_split(self):
|
||||
name = f'RR = RR x R'
|
||||
dim_partition_dict_mapping = {
|
||||
"input": {},
|
||||
"other": {},
|
||||
"output": {},
|
||||
}
|
||||
if self.has_bias:
|
||||
dim_partition_dict_mapping["bias"] = {}
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
communication_action_mapping = {}
|
||||
|
||||
return self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
def generate(self):
|
||||
'''
|
||||
Generate every possible strategies for a BatchNorm node, and record all strategies into the strategies_vector.
|
||||
'''
|
||||
strategy_list = []
|
||||
input_data_dim = len(self.op_data["input"].logical_shape)
|
||||
weight_data_dim = len(self.op_data["other"].logical_shape)
|
||||
# in LayerNorm context, batch dimensions mean all the dimensions do not join the normalization.
|
||||
batch_dimension_length = input_data_dim - weight_data_dim
|
||||
|
||||
# SR = SR x R with single mesh dim on batch dimensions
|
||||
strategy_list.extend(self.split_input_batch_single_mesh_dim(0, batch_dimension_length))
|
||||
strategy_list.extend(self.split_input_batch_single_mesh_dim(1, batch_dimension_length))
|
||||
|
||||
# SR = SR x R with both mesh dims on batch dimensions
|
||||
strategy_list.extend(self.split_input_batch_both_mesh_dim(0, 1, batch_dimension_length))
|
||||
|
||||
# RR = RR x R
|
||||
strategy_list.append(self.non_split())
|
||||
# update mete info on cost
|
||||
|
||||
for strategy in strategy_list:
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return strategy_list
|
|
@ -59,7 +59,6 @@ def test_bn_module_handler():
|
|||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
#[ 'S01R = S01R x R WITH SYNC_BN']
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# RS = RS x S
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
from colossalai.fx.tracer.meta_patch.patched_module import linear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.layer_norm_handler_v2 import LayerNormModuleHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
def test_ln_module_handler():
|
||||
model = nn.Sequential(nn.LayerNorm(16).to('meta'))
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %_0 : [#users=1] = call_module[target=0](args = (%input_1,), kwargs = {})
|
||||
# return _0
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
ln_mod_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(ln_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = LayerNormModuleHandler(node=ln_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 16])
|
||||
|
||||
assert mapping['other'].name == "weight"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([16])
|
||||
assert mapping['other'].type == OperationDataType.PARAM
|
||||
assert mapping['other'].logical_shape == torch.Size([16])
|
||||
|
||||
assert mapping['bias'].name == "bias"
|
||||
assert mapping['bias'].data.is_meta
|
||||
assert mapping['bias'].data.shape == torch.Size([16])
|
||||
assert mapping['bias'].type == OperationDataType.PARAM
|
||||
assert mapping['bias'].logical_shape == torch.Size([16])
|
||||
|
||||
assert mapping['output'].name == "_0"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# SR = SR x R
|
||||
assert '[S0, R] = [S0, R] x [R]' in strategy_name_list
|
||||
assert '[S1, R] = [S1, R] x [R]' in strategy_name_list
|
||||
|
||||
# RR = RR x R
|
||||
assert 'RR = RR x R' in strategy_name_list
|
||||
|
||||
# S01R = S01R x R
|
||||
assert '[S01, R] = [S01, R] x [R]' in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_ln_module_handler()
|
Loading…
Reference in New Issue