mirror of https://github.com/hpcaitech/ColossalAI
[fx] Add linear metainfo class for auto parallel (#1783)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallelpull/1792/head
parent
e8a9bebc87
commit
05ce3d369f
|
@ -0,0 +1,3 @@
|
|||
from .meta_registry import *
|
||||
from .metainfo import *
|
||||
from .registry import meta_register
|
|
@ -0,0 +1 @@
|
|||
from .linear import *
|
|
@ -0,0 +1,157 @@
|
|||
from typing import Callable, Dict, List, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ['linear_meta_info']
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.Linear)
|
||||
def linear_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.Linear meta info generator
|
||||
The atens graph of torch.nn.Linear with bias is
|
||||
graph():
|
||||
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
||||
%addmm_default : [#users=1] = call_function[target=torch.ops.aten.addmm.default](args = (None, %input_2, None), kwargs = {})
|
||||
%zeros_like_default : [#users=3] = call_function[target=torch.ops.aten.zeros_like.default](args = (%addmm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
||||
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
|
||||
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
|
||||
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
|
||||
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
|
||||
%sum_dim_int_list : [#users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%zeros_like_default, [None], None), kwargs = {})
|
||||
%view_default : [#users=1] = call_function[target=torch.ops.aten.view.default](args = (%sum_dim_int_list, [None]), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%view_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default,), kwargs = {})
|
||||
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
||||
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
|
||||
%detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
|
||||
%detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {})
|
||||
|
||||
The one without bias is
|
||||
graph():
|
||||
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
||||
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%input_2, None), kwargs = {})
|
||||
%zeros_like_default : [#users=2] = call_function[target=torch.ops.aten.zeros_like.default](args = (%mm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
||||
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
|
||||
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
|
||||
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
|
||||
%mm_default_2 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default_2,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
|
||||
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
|
||||
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and save input flag
|
||||
"""
|
||||
|
||||
has_bias: bool = False
|
||||
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
weight_tensor = next(filter(lambda x: x.name == 'weight', args)).data
|
||||
|
||||
# process the dimension of input and output
|
||||
if len(input_tensor.shape) > 2:
|
||||
input_tensor: torch.Tensor
|
||||
input_tensor = input_tensor.view(-1, input_tensor.shape[-1])
|
||||
|
||||
if len(output_tensor.shape) > 2:
|
||||
output_tensor: torch.Tensor
|
||||
output_tensor = output_tensor.view(-1, output_tensor.shape[-1])
|
||||
|
||||
if len(args) == 4:
|
||||
bias_tensor = next(filter(lambda x: x.name == 'bias', args)).data
|
||||
has_bias = True
|
||||
|
||||
if has_bias:
|
||||
# calculate cost with bias
|
||||
# the fwd op with compute cost is addmm
|
||||
# the bwd op with compute cost is mm * 2 and sum.dim_IntList
|
||||
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.addmm.default](
|
||||
[bias_tensor, input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
|
||||
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,)) + \
|
||||
flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], (bias_tensor,))
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
|
||||
bwd=bwd_compute_cost,
|
||||
total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# NOTE: Linear don't have buffer and temp in forward and backward phase
|
||||
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
|
||||
parameter=activation_size(weight_tensor) + activation_size(bias_tensor),
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
# the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor) +
|
||||
activation_size(bias_tensor),
|
||||
parameter=activation_size(weight_tensor) + activation_size(bias_tensor),
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
# total cost is to sum the forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
else:
|
||||
# calculate cost without bias
|
||||
# the fwd op with compute cost is mm
|
||||
# the bwd op with compute cost is mm * 2
|
||||
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.mm.default](
|
||||
[input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
|
||||
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,))
|
||||
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
|
||||
bwd=bwd_compute_cost,
|
||||
total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# NOTE: Linear don't have buffer and temp in forward and backward phase
|
||||
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
|
||||
parameter=activation_size(weight_tensor),
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
# the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor),
|
||||
parameter=activation_size(weight_tensor),
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
# total cost is to sum the forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = [input_tensor]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
|
@ -0,0 +1,101 @@
|
|||
from typing import Callable
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from .registry import meta_register
|
||||
|
||||
__all__ = ['MetaInfo']
|
||||
|
||||
|
||||
class MetaInfo:
|
||||
"""MetaInfo class
|
||||
This class is used to store meta info based on sharding strategy and the given
|
||||
target function.
|
||||
"""
|
||||
|
||||
def __init__(self, strategy: ShardingStrategy = None, target: Callable = None) -> None:
|
||||
# compute cost of forward and backward computation
|
||||
self.compute_cost: TrainCycleItem
|
||||
|
||||
# compute memory cost of forward and backward phase
|
||||
self.memory_cost: TrainCycleItem
|
||||
|
||||
# list of input tensors
|
||||
self.fwd_in: list[OperationData]
|
||||
|
||||
# sharding strategy
|
||||
self._strategy = strategy
|
||||
|
||||
# target function
|
||||
self._target = target
|
||||
|
||||
# compute metainfo if possible
|
||||
if self._strategy is not None and self._target is not None:
|
||||
self.compute_metainfo()
|
||||
|
||||
@property
|
||||
def strategy(self) -> ShardingStrategy:
|
||||
return self._strategy
|
||||
|
||||
@property
|
||||
def target(self) -> Callable:
|
||||
return self._target
|
||||
|
||||
@strategy.setter
|
||||
def strategy(self, strategy: ShardingStrategy) -> None:
|
||||
self._strategy = strategy
|
||||
if self._strategy is not None and self._target is not None:
|
||||
self.compute_metainfo()
|
||||
|
||||
@target.setter
|
||||
def target(self, target: Callable) -> None:
|
||||
self._target = target
|
||||
if self._strategy is not None and self._target is not None:
|
||||
self.compute_metainfo()
|
||||
|
||||
def compute_sharded_tensor(self, operation_data: OperationData, sharding_spec: ShardingSpec) -> torch.Tensor:
|
||||
"""
|
||||
Compute sharded meta tensor based on the given data and sharding spec.
|
||||
"""
|
||||
shard_sequnce = sharding_spec.sharding_sequence
|
||||
device_mesh = sharding_spec.device_mesh
|
||||
shape = operation_data.data.shape
|
||||
|
||||
new_shape = []
|
||||
for dim, shard in zip(shape, shard_sequnce):
|
||||
if shard.is_replica:
|
||||
# replica
|
||||
new_shape.append(dim)
|
||||
else:
|
||||
# sharded according to device_mesh shape
|
||||
new_shape.append(dim // np.prod(np.array([device_mesh.mesh_shape[i] for i in shard.shard_list])))
|
||||
|
||||
return OperationData(name=operation_data.name,
|
||||
data=torch.zeros(new_shape, device="meta"),
|
||||
type=operation_data.type,
|
||||
logical_shape=operation_data.logical_shape)
|
||||
|
||||
def compute_metainfo(self):
|
||||
"""
|
||||
Compute meta info based on sharding strategy and the given target function.
|
||||
"""
|
||||
|
||||
assert meta_register.has(self._target), f'{self._target} not found in the meta registry'
|
||||
meta_func = meta_register.get(self._target)
|
||||
|
||||
# construct args for meta_func
|
||||
args = [self.compute_sharded_tensor(k, v) for k, v in self._strategy.sharding_specs.items()]
|
||||
|
||||
# compute metainfo with meta_func
|
||||
self.compute_cost, self.memory_cost, self.fwd_in = meta_func(*args)
|
|
@ -0,0 +1,32 @@
|
|||
__all__ = ['Registry']
|
||||
|
||||
|
||||
class Registry:
|
||||
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
self.store = {}
|
||||
|
||||
def register(self, source):
|
||||
|
||||
def wrapper(func):
|
||||
if isinstance(source, (list, tuple)):
|
||||
# support register a list of items for this func
|
||||
for element in source:
|
||||
self.store[element] = func
|
||||
else:
|
||||
self.store[source] = func
|
||||
return func
|
||||
|
||||
return wrapper
|
||||
|
||||
def get(self, source):
|
||||
assert source in self.store, f'{source} not found in the {self.name} registry'
|
||||
target = self.store[source]
|
||||
return target
|
||||
|
||||
def has(self, source):
|
||||
return source in self.store
|
||||
|
||||
|
||||
meta_register = Registry('meta')
|
|
@ -79,9 +79,12 @@ class MemoryCost:
|
|||
Args:
|
||||
activation (int): the memory cost incurred by the activations in bytes.
|
||||
parameter (int): the memory cost incurred by the module parameter in bytes.
|
||||
temp (int): the memory cost incurred by the temporary tensors in bytes.
|
||||
buffer (int): the memory cost incurred by the module buffer in bytes.
|
||||
"""
|
||||
activation: int = 0
|
||||
parameter: int = 0
|
||||
temp: int = 0
|
||||
buffer: int = 0
|
||||
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ def addmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
|
|||
# inputs is a list of length 3.
|
||||
input_shapes = [v.shape for v in inputs[1:3]]
|
||||
# input_shapes[0]: [batch size, input feature dimension]
|
||||
# input_shapes[1]: [batch size, output feature dimension]
|
||||
# input_shapes[1]: [input feature dimension, output feature dimension]
|
||||
assert len(input_shapes[0]) == 2, input_shapes[0]
|
||||
assert len(input_shapes[1]) == 2, input_shapes[1]
|
||||
batch_size, input_dim = input_shapes[0]
|
||||
|
|
|
@ -0,0 +1,97 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import LinearModuleHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
if torch.__version__ >= '1.12.0':
|
||||
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='PyTorch version is too low')
|
||||
@parameterize('bias', [True, False])
|
||||
def test_linear_metainfo(bias):
|
||||
model = nn.Sequential(nn.Linear(16, 32, bias=bias).to('meta'))
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(2, 2, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = LinearModuleHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# build strategy
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# assert module is registered
|
||||
assert meta_register.has(linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__)
|
||||
|
||||
# check metainfo
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
try:
|
||||
metainfo = MetaInfo(strategy,
|
||||
linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__)
|
||||
|
||||
except:
|
||||
raise RuntimeError(f"Failed to compute metainfo for {strategy}")
|
||||
|
||||
|
||||
def _linear_mem_test(rank, bias, world_size, port):
|
||||
"""This function is for linear memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed
|
||||
in unit test.
|
||||
|
||||
Args:
|
||||
bias (bool, optional): Indicate whether we need bias for Linear. Defaults to True.
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.Linear(64, 128, bias=bias)).cuda()
|
||||
input = torch.rand(8, 8, 16, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# memory test
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=1,
|
||||
strategy_number=13,
|
||||
input_args=[input],
|
||||
meta_arg_names=["input"])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_linear_meta_concrete_info_match(bias=False):
|
||||
world_size = 4
|
||||
run_func_module = partial(_linear_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_linear_metainfo()
|
||||
# _linear_mem_test(bias=True)
|
||||
test_linear_meta_concrete_info_match()
|
|
@ -0,0 +1,121 @@
|
|||
import copy
|
||||
from pprint import pprint
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
|
||||
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
|
||||
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
|
||||
from colossalai.auto_parallel.tensor_shard.solver import SolverOptions, StrategiesConstructor
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
|
||||
if torch.__version__ >= '1.12.0':
|
||||
from colossalai.auto_parallel.meta_profiler import MetaInfo
|
||||
|
||||
|
||||
def mem_test_for_node_strategy(rank: int,
|
||||
model: torch.nn.Module,
|
||||
device_mesh: DeviceMesh,
|
||||
node_index: int,
|
||||
strategy_number: int,
|
||||
input_args: List[torch.Tensor],
|
||||
meta_arg_names: List[str],
|
||||
input_kwargs: Dict[str, torch.Tensor] = {}):
|
||||
for strategy_index in range(strategy_number):
|
||||
# We need to copy the model to avoid do backward more than once in same graph
|
||||
model_to_shard, args_to_shard, kwargs_to_shard = copy.deepcopy(model), copy.deepcopy(input_args), copy.deepcopy(
|
||||
input_kwargs)
|
||||
|
||||
tracer = ColoTracer()
|
||||
input_sample = {}
|
||||
for input_arg, meta_arg_name in zip(input_args, meta_arg_names):
|
||||
input_sample[meta_arg_name] = torch.rand(input_arg.shape).to('meta')
|
||||
for meta_kwarg_name, input_kwarg in input_kwargs.items():
|
||||
input_sample[meta_kwarg_name] = torch.rand(input_kwarg.shape).to('meta')
|
||||
graph = tracer.trace(root=model_to_shard, meta_args=input_sample)
|
||||
gm = GraphModule(model_to_shard, graph, model_to_shard.__class__.__name__)
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
target_node = list(graph.nodes)[node_index]
|
||||
|
||||
# solution construction
|
||||
# construct the strategy for the target node
|
||||
solution_len = len(strategies_constructor.leaf_strategies)
|
||||
solution = [0] * solution_len
|
||||
solution[node_index] = strategy_index
|
||||
|
||||
# construct the strategy for the output node
|
||||
placeholder_strategy = list(graph.nodes)[-1].strategies_vector[0]
|
||||
output_key = next(key for key in target_node.strategies_vector[strategy_index].sharding_specs.keys()
|
||||
if key in placeholder_strategy.sharding_specs)
|
||||
placeholder_strategy.sharding_specs[output_key] = target_node.strategies_vector[strategy_index].sharding_specs[
|
||||
output_key]
|
||||
|
||||
gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(
|
||||
gm, solution, device_mesh)
|
||||
gm = runtime_apply_pass(gm)
|
||||
gm.recompile()
|
||||
gm: GraphModule
|
||||
|
||||
if rank == 0:
|
||||
print("=======================")
|
||||
print(f"#strategy_index: {strategy_index}")
|
||||
pprint(target_node.strategies_vector[strategy_index])
|
||||
|
||||
# warmup
|
||||
with torch.no_grad():
|
||||
output = gm(*args_to_shard,
|
||||
sharding_spec_convert_dict=sharding_spec_dict,
|
||||
origin_node_sharding_spec_dict=origin_spec_dict,
|
||||
comm_actions_dict=comm_actions_dict,
|
||||
**kwargs_to_shard)
|
||||
|
||||
del output
|
||||
# forward memory compare
|
||||
if rank == 0:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
output = gm(*args_to_shard,
|
||||
sharding_spec_convert_dict=sharding_spec_dict,
|
||||
origin_node_sharding_spec_dict=origin_spec_dict,
|
||||
comm_actions_dict=comm_actions_dict,
|
||||
**kwargs_to_shard)
|
||||
|
||||
if rank == 0:
|
||||
# print forward memory allocated and peak memory stats in kb
|
||||
print(
|
||||
f"forward memory allocated: {(torch.cuda.memory_allocated() - mem_stamp0) / 1024} kb, peak memory stats: {(torch.cuda.max_memory_allocated() - mem_stamp0) / 1024} kb"
|
||||
)
|
||||
|
||||
# backward memory compare
|
||||
grad_tensors = torch.ones_like(output)
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
torch.autograd.backward(output, grad_tensors)
|
||||
|
||||
if rank == 0:
|
||||
# print backward memory allocated and peak memory stats in kb
|
||||
print(
|
||||
f"backward memory allocated: {(torch.cuda.memory_allocated() - mem_stamp0) / 1024} kb, peak memory stats: {(torch.cuda.max_memory_allocated() - mem_stamp0) / 1024} kb"
|
||||
)
|
||||
|
||||
# estimated memory
|
||||
metainfo = MetaInfo(target_node.strategies_vector[strategy_index],
|
||||
target_node.graph.owning_module.get_submodule(target_node.target).__class__)
|
||||
print("estimated memory:")
|
||||
print(
|
||||
f"forward activation: {metainfo.memory_cost.fwd.activation / 1024} kb, forward param: {metainfo.memory_cost.fwd.parameter / 1024} kb"
|
||||
)
|
||||
print(
|
||||
f"forward temp: {metainfo.memory_cost.fwd.temp / 1024} kb, forward buffer: {metainfo.memory_cost.fwd.buffer / 1024} kb"
|
||||
)
|
||||
print(
|
||||
f"backward activation: {metainfo.memory_cost.bwd.activation / 1024} kb, backward param: {metainfo.memory_cost.bwd.parameter / 1024} kb"
|
||||
)
|
||||
print(
|
||||
f"backward temp: {metainfo.memory_cost.bwd.temp / 1024} kb, backward buffer: {metainfo.memory_cost.bwd.buffer / 1024} kb"
|
||||
)
|
||||
print("=======================")
|
|
@ -132,7 +132,6 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
|||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
|
||||
class LinearModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
|
|
Loading…
Reference in New Issue