diff --git a/colossalai/auto_parallel/meta_profiler/__init__.py b/colossalai/auto_parallel/meta_profiler/__init__.py new file mode 100644 index 000000000..bfd361951 --- /dev/null +++ b/colossalai/auto_parallel/meta_profiler/__init__.py @@ -0,0 +1,3 @@ +from .meta_registry import * +from .metainfo import * +from .registry import meta_register diff --git a/colossalai/auto_parallel/meta_profiler/meta_registry/__init__.py b/colossalai/auto_parallel/meta_profiler/meta_registry/__init__.py new file mode 100644 index 000000000..12ccca86a --- /dev/null +++ b/colossalai/auto_parallel/meta_profiler/meta_registry/__init__.py @@ -0,0 +1 @@ +from .linear import * diff --git a/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py b/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py new file mode 100644 index 000000000..e74f3e632 --- /dev/null +++ b/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py @@ -0,0 +1,157 @@ +from typing import Callable, Dict, List, Tuple, Union + +import torch + +from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( + MemoryCost, + OperationData, + OperationDataType, + ShardingStrategy, + StrategiesVector, + TrainCycleItem, +) +from colossalai.fx.profiler.memory_utils import activation_size +from colossalai.fx.profiler.opcount import flop_mapping +from colossalai.tensor.sharding_spec import ShardingSpec + +from ..registry import meta_register + +__all__ = ['linear_meta_info'] + + +@meta_register.register(torch.nn.Linear) +def linear_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: + """torch.nn.Linear meta info generator + The atens graph of torch.nn.Linear with bias is + graph(): + %input_2 : [#users=2] = placeholder[target=placeholder](default=) + %addmm_default : [#users=1] = call_function[target=torch.ops.aten.addmm.default](args = (None, %input_2, None), kwargs = {}) + %zeros_like_default : [#users=3] = call_function[target=torch.ops.aten.zeros_like.default](args = (%addmm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) + %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {}) + %mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {}) + %t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {}) + %mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {}) + %t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {}) + %sum_dim_int_list : [#users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%zeros_like_default, [None], None), kwargs = {}) + %view_default : [#users=1] = call_function[target=torch.ops.aten.view.default](args = (%sum_dim_int_list, [None]), kwargs = {}) + %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%view_default,), kwargs = {}) + %detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {}) + %detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default,), kwargs = {}) + %detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {}) + %t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {}) + %detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {}) + %detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {}) + + The one without bias is + graph(): + %input_2 : [#users=2] = placeholder[target=placeholder](default=) + %mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%input_2, None), kwargs = {}) + %zeros_like_default : [#users=2] = call_function[target=torch.ops.aten.zeros_like.default](args = (%mm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) + %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {}) + %t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {}) + %mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {}) + %t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {}) + %mm_default_2 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {}) + %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default_2,), kwargs = {}) + %detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {}) + %t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {}) + %detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {}) + %detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {}) + + Returns: + Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and save input flag + """ + + has_bias: bool = False + input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data + output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data + weight_tensor = next(filter(lambda x: x.name == 'weight', args)).data + + # process the dimension of input and output + if len(input_tensor.shape) > 2: + input_tensor: torch.Tensor + input_tensor = input_tensor.view(-1, input_tensor.shape[-1]) + + if len(output_tensor.shape) > 2: + output_tensor: torch.Tensor + output_tensor = output_tensor.view(-1, output_tensor.shape[-1]) + + if len(args) == 4: + bias_tensor = next(filter(lambda x: x.name == 'bias', args)).data + has_bias = True + + if has_bias: + # calculate cost with bias + # the fwd op with compute cost is addmm + # the bwd op with compute cost is mm * 2 and sum.dim_IntList + + # calculate compute cost + fwd_compute_cost = flop_mapping[torch.ops.aten.addmm.default]( + [bias_tensor, input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,)) + bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \ + flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,)) + \ + flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], (bias_tensor,)) + compute_cost = TrainCycleItem(fwd=fwd_compute_cost, + bwd=bwd_compute_cost, + total=fwd_compute_cost + bwd_compute_cost) + + # calculate memory cost + # NOTE: Linear don't have buffer and temp in forward and backward phase + # the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor + fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor), + parameter=activation_size(weight_tensor) + activation_size(bias_tensor), + temp=0, + buffer=0) + + # the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0 + bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor) + + activation_size(bias_tensor), + parameter=activation_size(weight_tensor) + activation_size(bias_tensor), + temp=0, + buffer=0) + + # total cost is to sum the forward and backward cost + total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation, + parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter) + + memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost) + + else: + # calculate cost without bias + # the fwd op with compute cost is mm + # the bwd op with compute cost is mm * 2 + + # calculate compute cost + fwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]( + [input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,)) + bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \ + flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,)) + + compute_cost = TrainCycleItem(fwd=fwd_compute_cost, + bwd=bwd_compute_cost, + total=fwd_compute_cost + bwd_compute_cost) + + # calculate memory cost + # NOTE: Linear don't have buffer and temp in forward and backward phase + # the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor + fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor), + parameter=activation_size(weight_tensor), + temp=0, + buffer=0) + + # the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0 + bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor), + parameter=activation_size(weight_tensor), + temp=0, + buffer=0) + + # total cost is to sum the forward and backward cost + total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation, + parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter) + + memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost) + + # store fwd_in + fwd_in = [input_tensor] + + return compute_cost, memory_cost, fwd_in diff --git a/colossalai/auto_parallel/meta_profiler/metainfo.py b/colossalai/auto_parallel/meta_profiler/metainfo.py new file mode 100644 index 000000000..b79229e2c --- /dev/null +++ b/colossalai/auto_parallel/meta_profiler/metainfo.py @@ -0,0 +1,101 @@ +from typing import Callable + +import numpy as np +import torch + +from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( + MemoryCost, + OperationData, + OperationDataType, + ShardingStrategy, + StrategiesVector, + TrainCycleItem, +) +from colossalai.tensor.sharding_spec import ShardingSpec + +from .registry import meta_register + +__all__ = ['MetaInfo'] + + +class MetaInfo: + """MetaInfo class + This class is used to store meta info based on sharding strategy and the given + target function. + """ + + def __init__(self, strategy: ShardingStrategy = None, target: Callable = None) -> None: + # compute cost of forward and backward computation + self.compute_cost: TrainCycleItem + + # compute memory cost of forward and backward phase + self.memory_cost: TrainCycleItem + + # list of input tensors + self.fwd_in: list[OperationData] + + # sharding strategy + self._strategy = strategy + + # target function + self._target = target + + # compute metainfo if possible + if self._strategy is not None and self._target is not None: + self.compute_metainfo() + + @property + def strategy(self) -> ShardingStrategy: + return self._strategy + + @property + def target(self) -> Callable: + return self._target + + @strategy.setter + def strategy(self, strategy: ShardingStrategy) -> None: + self._strategy = strategy + if self._strategy is not None and self._target is not None: + self.compute_metainfo() + + @target.setter + def target(self, target: Callable) -> None: + self._target = target + if self._strategy is not None and self._target is not None: + self.compute_metainfo() + + def compute_sharded_tensor(self, operation_data: OperationData, sharding_spec: ShardingSpec) -> torch.Tensor: + """ + Compute sharded meta tensor based on the given data and sharding spec. + """ + shard_sequnce = sharding_spec.sharding_sequence + device_mesh = sharding_spec.device_mesh + shape = operation_data.data.shape + + new_shape = [] + for dim, shard in zip(shape, shard_sequnce): + if shard.is_replica: + # replica + new_shape.append(dim) + else: + # sharded according to device_mesh shape + new_shape.append(dim // np.prod(np.array([device_mesh.mesh_shape[i] for i in shard.shard_list]))) + + return OperationData(name=operation_data.name, + data=torch.zeros(new_shape, device="meta"), + type=operation_data.type, + logical_shape=operation_data.logical_shape) + + def compute_metainfo(self): + """ + Compute meta info based on sharding strategy and the given target function. + """ + + assert meta_register.has(self._target), f'{self._target} not found in the meta registry' + meta_func = meta_register.get(self._target) + + # construct args for meta_func + args = [self.compute_sharded_tensor(k, v) for k, v in self._strategy.sharding_specs.items()] + + # compute metainfo with meta_func + self.compute_cost, self.memory_cost, self.fwd_in = meta_func(*args) diff --git a/colossalai/auto_parallel/meta_profiler/registry.py b/colossalai/auto_parallel/meta_profiler/registry.py new file mode 100644 index 000000000..46350c4dd --- /dev/null +++ b/colossalai/auto_parallel/meta_profiler/registry.py @@ -0,0 +1,32 @@ +__all__ = ['Registry'] + + +class Registry: + + def __init__(self, name): + self.name = name + self.store = {} + + def register(self, source): + + def wrapper(func): + if isinstance(source, (list, tuple)): + # support register a list of items for this func + for element in source: + self.store[element] = func + else: + self.store[source] = func + return func + + return wrapper + + def get(self, source): + assert source in self.store, f'{source} not found in the {self.name} registry' + target = self.store[source] + return target + + def has(self, source): + return source in self.store + + +meta_register = Registry('meta') diff --git a/colossalai/auto_parallel/tensor_shard/sharding_strategy.py b/colossalai/auto_parallel/tensor_shard/sharding_strategy.py index 334fb10d7..415a1de9e 100644 --- a/colossalai/auto_parallel/tensor_shard/sharding_strategy.py +++ b/colossalai/auto_parallel/tensor_shard/sharding_strategy.py @@ -79,9 +79,12 @@ class MemoryCost: Args: activation (int): the memory cost incurred by the activations in bytes. parameter (int): the memory cost incurred by the module parameter in bytes. + temp (int): the memory cost incurred by the temporary tensors in bytes. + buffer (int): the memory cost incurred by the module buffer in bytes. """ activation: int = 0 parameter: int = 0 + temp: int = 0 buffer: int = 0 diff --git a/colossalai/fx/profiler/opcount.py b/colossalai/fx/profiler/opcount.py index 8bd972ff3..bb8db54a4 100644 --- a/colossalai/fx/profiler/opcount.py +++ b/colossalai/fx/profiler/opcount.py @@ -32,7 +32,7 @@ def addmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number: # inputs is a list of length 3. input_shapes = [v.shape for v in inputs[1:3]] # input_shapes[0]: [batch size, input feature dimension] - # input_shapes[1]: [batch size, output feature dimension] + # input_shapes[1]: [input feature dimension, output feature dimension] assert len(input_shapes[0]) == 2, input_shapes[0] assert len(input_shapes[1]) == 2, input_shapes[1] batch_size, input_dim = input_shapes[0] diff --git a/tests/test_auto_parallel/test_tensor_shard/test_metainfo/test_linear_metainfo.py b/tests/test_auto_parallel/test_tensor_shard/test_metainfo/test_linear_metainfo.py new file mode 100644 index 000000000..7a78fe1b2 --- /dev/null +++ b/tests/test_auto_parallel/test_tensor_shard/test_metainfo/test_linear_metainfo.py @@ -0,0 +1,97 @@ +from functools import partial + +import pytest +import torch +import torch.multiprocessing as mp +import torch.nn as nn + +from colossalai.auto_parallel.tensor_shard.node_handler import LinearModuleHandler +from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingStrategy, StrategiesVector +from colossalai.device.device_mesh import DeviceMesh +from colossalai.fx import ColoGraphModule, ColoTracer +from colossalai.initialize import launch +from colossalai.logging import disable_existing_loggers +from colossalai.testing.pytest_wrapper import run_on_environment_flag +from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use +from colossalai.utils import free_port +from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy + +if torch.__version__ >= '1.12.0': + from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register + + +@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='PyTorch version is too low') +@parameterize('bias', [True, False]) +def test_linear_metainfo(bias): + model = nn.Sequential(nn.Linear(16, 32, bias=bias).to('meta')) + + tracer = ColoTracer() + graph = tracer.trace(model, meta_args={"input": torch.rand(2, 2, 4, 16).to('meta')}) + gm = ColoGraphModule(model, graph) + physical_mesh_id = torch.arange(0, 4) + + mesh_shape = (2, 2) + device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) + linear_mod_node = list(graph.nodes)[1] + strategies_vector = StrategiesVector(linear_mod_node) + + # build handler + handler = LinearModuleHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) + + # build strategy + strategies_vector = handler.register_strategy(compute_resharding_cost=False) + + # assert module is registered + assert meta_register.has(linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__) + + # check metainfo + for strategy in strategies_vector: + strategy: ShardingStrategy + try: + metainfo = MetaInfo(strategy, + linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__) + + except: + raise RuntimeError(f"Failed to compute metainfo for {strategy}") + + +def _linear_mem_test(rank, bias, world_size, port): + """This function is for linear memory test + Test and print real memory cost and estimated, this test will not be executed + in unit test. + + Args: + bias (bool, optional): Indicate whether we need bias for Linear. Defaults to True. + """ + disable_existing_loggers() + launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') + model = nn.Sequential(nn.Linear(64, 128, bias=bias)).cuda() + input = torch.rand(8, 8, 16, 64).cuda() + input.requires_grad = True + physical_mesh_id = torch.arange(0, 4) + mesh_shape = (2, 2) + device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) + + # memory test + mem_test_for_node_strategy(rank=rank, + model=model, + device_mesh=device_mesh, + node_index=1, + strategy_number=13, + input_args=[input], + meta_arg_names=["input"]) + + +@run_on_environment_flag(name='AUTO_PARALLEL') +@pytest.mark.dist +@rerun_if_address_is_in_use() +def test_linear_meta_concrete_info_match(bias=False): + world_size = 4 + run_func_module = partial(_linear_mem_test, bias=bias, world_size=world_size, port=free_port()) + mp.spawn(run_func_module, nprocs=world_size) + + +if __name__ == '__main__': + # test_linear_metainfo() + # _linear_mem_test(bias=True) + test_linear_meta_concrete_info_match() diff --git a/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py b/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py new file mode 100644 index 000000000..6d446a14d --- /dev/null +++ b/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py @@ -0,0 +1,121 @@ +import copy +from pprint import pprint +from typing import Dict, List + +import torch +from torch.fx import GraphModule + +from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass +from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass +from colossalai.auto_parallel.tensor_shard.solver import SolverOptions, StrategiesConstructor +from colossalai.device.device_mesh import DeviceMesh +from colossalai.fx.tracer.tracer import ColoTracer + +if torch.__version__ >= '1.12.0': + from colossalai.auto_parallel.meta_profiler import MetaInfo + + +def mem_test_for_node_strategy(rank: int, + model: torch.nn.Module, + device_mesh: DeviceMesh, + node_index: int, + strategy_number: int, + input_args: List[torch.Tensor], + meta_arg_names: List[str], + input_kwargs: Dict[str, torch.Tensor] = {}): + for strategy_index in range(strategy_number): + # We need to copy the model to avoid do backward more than once in same graph + model_to_shard, args_to_shard, kwargs_to_shard = copy.deepcopy(model), copy.deepcopy(input_args), copy.deepcopy( + input_kwargs) + + tracer = ColoTracer() + input_sample = {} + for input_arg, meta_arg_name in zip(input_args, meta_arg_names): + input_sample[meta_arg_name] = torch.rand(input_arg.shape).to('meta') + for meta_kwarg_name, input_kwarg in input_kwargs.items(): + input_sample[meta_kwarg_name] = torch.rand(input_kwarg.shape).to('meta') + graph = tracer.trace(root=model_to_shard, meta_args=input_sample) + gm = GraphModule(model_to_shard, graph, model_to_shard.__class__.__name__) + solver_options = SolverOptions(fast=True) + strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) + strategies_constructor.build_strategies_and_cost() + target_node = list(graph.nodes)[node_index] + + # solution construction + # construct the strategy for the target node + solution_len = len(strategies_constructor.leaf_strategies) + solution = [0] * solution_len + solution[node_index] = strategy_index + + # construct the strategy for the output node + placeholder_strategy = list(graph.nodes)[-1].strategies_vector[0] + output_key = next(key for key in target_node.strategies_vector[strategy_index].sharding_specs.keys() + if key in placeholder_strategy.sharding_specs) + placeholder_strategy.sharding_specs[output_key] = target_node.strategies_vector[strategy_index].sharding_specs[ + output_key] + + gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass( + gm, solution, device_mesh) + gm = runtime_apply_pass(gm) + gm.recompile() + gm: GraphModule + + if rank == 0: + print("=======================") + print(f"#strategy_index: {strategy_index}") + pprint(target_node.strategies_vector[strategy_index]) + + # warmup + with torch.no_grad(): + output = gm(*args_to_shard, + sharding_spec_convert_dict=sharding_spec_dict, + origin_node_sharding_spec_dict=origin_spec_dict, + comm_actions_dict=comm_actions_dict, + **kwargs_to_shard) + + del output + # forward memory compare + if rank == 0: + torch.cuda.reset_peak_memory_stats() + mem_stamp0 = torch.cuda.memory_allocated() + output = gm(*args_to_shard, + sharding_spec_convert_dict=sharding_spec_dict, + origin_node_sharding_spec_dict=origin_spec_dict, + comm_actions_dict=comm_actions_dict, + **kwargs_to_shard) + + if rank == 0: + # print forward memory allocated and peak memory stats in kb + print( + f"forward memory allocated: {(torch.cuda.memory_allocated() - mem_stamp0) / 1024} kb, peak memory stats: {(torch.cuda.max_memory_allocated() - mem_stamp0) / 1024} kb" + ) + + # backward memory compare + grad_tensors = torch.ones_like(output) + torch.cuda.reset_peak_memory_stats() + mem_stamp0 = torch.cuda.memory_allocated() + torch.autograd.backward(output, grad_tensors) + + if rank == 0: + # print backward memory allocated and peak memory stats in kb + print( + f"backward memory allocated: {(torch.cuda.memory_allocated() - mem_stamp0) / 1024} kb, peak memory stats: {(torch.cuda.max_memory_allocated() - mem_stamp0) / 1024} kb" + ) + + # estimated memory + metainfo = MetaInfo(target_node.strategies_vector[strategy_index], + target_node.graph.owning_module.get_submodule(target_node.target).__class__) + print("estimated memory:") + print( + f"forward activation: {metainfo.memory_cost.fwd.activation / 1024} kb, forward param: {metainfo.memory_cost.fwd.parameter / 1024} kb" + ) + print( + f"forward temp: {metainfo.memory_cost.fwd.temp / 1024} kb, forward buffer: {metainfo.memory_cost.fwd.buffer / 1024} kb" + ) + print( + f"backward activation: {metainfo.memory_cost.bwd.activation / 1024} kb, backward param: {metainfo.memory_cost.bwd.parameter / 1024} kb" + ) + print( + f"backward temp: {metainfo.memory_cost.bwd.temp / 1024} kb, backward buffer: {metainfo.memory_cost.bwd.buffer / 1024} kb" + ) + print("=======================") diff --git a/tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_linear_handler.py b/tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_linear_handler.py index 416663620..acb12eec0 100644 --- a/tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_linear_handler.py +++ b/tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_linear_handler.py @@ -132,7 +132,6 @@ def check_linear_module_handler(rank, bias, world_size, port): assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] - class LinearModel(nn.Module): def __init__(self):