[autoparallel] integrate auto parallel with torch fx (#1479)

pull/1492/head
Frank Lee 2022-08-23 14:23:08 +08:00 committed by GitHub
parent 8fb09a950a
commit ede326298b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 132 additions and 120 deletions

View File

@ -0,0 +1,6 @@
from .operator_handler import OperatorHandler
from .dot_handler import DotHandler
from .conv_handler import ConvHandler
from .sharding_strategy import ShardingStrategy, StrategiesVector
__all__ = ['OperatorHandler', 'DotHandler', 'ConvHandler', 'StrategiesVector', 'ShardingStrategy']

View File

@ -1,17 +1,20 @@
import operator
from functools import reduce
import torch
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy
from .operator_handler import OperatorHanlder
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
class ConvHandler(OperatorHanlder):
class ConvHandler(OperatorHandler):
"""
A OperatorHandler which deals with the sharding strategies of linear matrix multiplication.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_data = self.predecessor_node[0]._meta_data
self.weight = self.module_named_parameters['weight']
self.output_data = self.node._meta_data
self._sanity_check()
def _sanity_check(self):
@ -42,7 +45,7 @@ class ConvHandler(OperatorHanlder):
# 1D: (L) * N * Cout * Cin * kernel
# 2D: (H * W) * N * Cout * Cin * kernel
# 3D: (H * W * D) * N * Cout * Cin * kernel
output_size = self.output.shape[2:]
output_size = self.output_data.shape[2:]
output_size_product = reduce(operator.mul, output_size, 1)
kernel_size = self.weight.shape[2:]
kernel_size_product = reduce(operator.mul, kernel_size, 1)
@ -59,11 +62,10 @@ class ConvHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
bs = self.input_data.shape[0] // self.device_mesh.shape[mesh_dim_0]
@ -73,7 +75,7 @@ class ConvHandler(OperatorHanlder):
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -87,7 +89,7 @@ class ConvHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def split_input_both_dim_weight_in_channel(self, mesh_dim_0, mesh_dim_1):
name = f'S{mesh_dim_0}R = S{mesh_dim_0}S{mesh_dim_1} x S{mesh_dim_1}R'
@ -99,11 +101,10 @@ class ConvHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
bs = self.input_data.shape[0] // self.device_mesh.shape[mesh_dim_0]
@ -113,7 +114,7 @@ class ConvHandler(OperatorHanlder):
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -127,7 +128,7 @@ class ConvHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def split_input_in_channel_weight_both_channel(self, mesh_dim_0, mesh_dim_1):
name = f'RS{mesh_dim_1} = RS{mesh_dim_0} x S{mesh_dim_0}S{mesh_dim_1}'
@ -139,11 +140,10 @@ class ConvHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_1]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
@ -153,7 +153,7 @@ class ConvHandler(OperatorHanlder):
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -167,7 +167,7 @@ class ConvHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def split_weight_out_channel(self, mesh_dim_0):
name = f'RS{mesh_dim_0} = RR x RS{mesh_dim_0}'
@ -179,11 +179,10 @@ class ConvHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_0]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
@ -193,7 +192,7 @@ class ConvHandler(OperatorHanlder):
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -208,7 +207,7 @@ class ConvHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def non_split(self):
name = f'RR = RR x RR'
@ -220,11 +219,10 @@ class ConvHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
@ -234,7 +232,7 @@ class ConvHandler(OperatorHanlder):
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
memory_cost = numel * size_per_elem_bytes
@ -248,9 +246,9 @@ class ConvHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def register_strategy_into_strategies_vector(self):
def register_strategy(self) -> StrategiesVector:
'''
Generate every possible strategies for a Conv node, and record all strategies into the strategies_vector.
@ -315,3 +313,5 @@ class ConvHandler(OperatorHanlder):
# RR= RR x RR
self.non_split()
return self.strategies_vector

View File

@ -1,15 +1,21 @@
import operator
import torch
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy
from .operator_handler import OperatorHanlder
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
from functools import reduce
class DotHandler(OperatorHanlder):
class DotHandler(OperatorHandler):
"""
A OperatorHandler which deals with the sharding strategies of linear matrix multiplication.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_data = self.predecessor_node[0]._meta_data
self.weight = self.module_named_parameters['weight']
self.output_data = self.node._meta_data
def _generate_compute_cost(self, input_shape, weight_shape):
# TODO: consider bias addition
compute_cost = reduce(operator.mul, input_shape) * weight_shape[0] * 2
@ -27,18 +33,17 @@ class DotHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute computation cost
compute_cost = self._generate_compute_cost(self.input_data.shape, self.weight.shape)
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -55,7 +60,7 @@ class DotHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def split_lhs_space_both_contract(self, mesh_dim_0, mesh_dim_1):
# handle the case SR = SS x SR
@ -70,18 +75,17 @@ class DotHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
compute_cost = self._generate_compute_cost(self.input_data.shape, self.weight.shape)
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -95,7 +99,7 @@ class DotHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def split_rhs_space_both_contract(self, mesh_dim_0, mesh_dim_1):
name = f'RS{mesh_dim_1} = RS{mesh_dim_0} x S{mesh_dim_0}S{mesh_dim_1}'
@ -107,18 +111,17 @@ class DotHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_1]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
compute_cost = self._generate_compute_cost(self.input_data.shape, self.weight.shape)
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim_0]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -132,7 +135,7 @@ class DotHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def recompute_split_both_contract(self, mesh_dim):
name = f'RR = RS{mesh_dim} x S{mesh_dim}R'
@ -144,18 +147,17 @@ class DotHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
compute_cost = self._generate_compute_cost(self.input_data.shape, self.weight.shape)
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
memory_cost = numel * size_per_elem_bytes
@ -168,7 +170,7 @@ class DotHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def split_rhs_space_only(self, mesh_dim):
name = f'RS{mesh_dim} = RR x RS{mesh_dim}'
@ -180,18 +182,17 @@ class DotHandler(OperatorHanlder):
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim]}
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = {}
self._generate_resharding_costs(resharding_costs, sharding_spec_for_input)
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input])
# compute the computation cost of this strategy
compute_cost = self._generate_compute_cost(self.input_data.shape, self.weight.shape)
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel = self.output.numel()
numel = self.output_data.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
sharding_size = self.device_mesh.shape[mesh_dim]
memory_cost = numel * size_per_elem_bytes / sharding_size
@ -205,9 +206,9 @@ class DotHandler(OperatorHanlder):
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.strategies.append(sharding_strategies)
self.strategies_vector.append(sharding_strategies)
def register_strategy_into_strategies_vector(self):
def register_strategy(self) -> StrategiesVector:
'''
Generate every possible strategies for a Conv node, and record all strategies into the strategies_vector.
@ -233,3 +234,4 @@ class DotHandler(OperatorHanlder):
# RS = RR x RS
self.split_rhs_space_only(0)
self.split_rhs_space_only(1)
return self.strategies_vector

View File

@ -1,15 +1,18 @@
import torch
import torch.nn as nn
from abc import ABC, abstractmethod
from torch.fx.node import Node
import torch.nn as nn
from typing import Dict
from colossalai.device.device_mesh import DeviceMesh
from .sharding_strategy import StrategiesVector
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
from .sharding_strategy import StrategiesVector
class OperatorHanlder(ABC):
class OperatorHandler(ABC):
'''
The OperatorHanlder is an abstract class used to generate every possible strategies for a operator node.
The OperatorHandler is an abstract class used to generate every possible strategies for a operator node.
Argument:
input_node(Node): the input node in node argument list.
@ -21,30 +24,43 @@ class OperatorHanlder(ABC):
shape_consistency_manager(ShapeConsistencyManager): ShapeConsistencyManager will give the resharding costs of the different sharding specs.
'''
def __init__(self, input_node: Node, input_index: int, weight: nn.Parameter, output_node: Node,
device_mesh: DeviceMesh, strategies_vector: StrategiesVector,
def __init__(self, node: Node, device_mesh: DeviceMesh, strategies_vector: StrategiesVector,
shape_consistency_manager: ShapeConsistencyManager):
self.input_node = input_node
self.input_data = self.input_node._meta_data
self.weight = weight
self.input_index = input_index
self.output_node = output_node
self.output = self.output_node._meta_data
self.node = node
self.predecessor_node = list(node._input_nodes.keys())
self.successor_node = list(node.users.keys())
self.device_mesh = device_mesh
self.strategies_vector = strategies_vector
self.shape_consistency_manager = shape_consistency_manager
# find the module and its parameters associated with this node
# this can be used to compute the compute/communication/sharding cost
if self.node.op == 'call_module':
module = node.graph.owning_module.get_submodule(node.target)
named_parameters = list(module.named_parameters(recurse=False))
# convert named parameters from list to dict
named_parameters = {k: v for k, v in named_parameters}
else:
module = None
named_parameters = None
self.module = module
self.module_named_parameters = named_parameters
@abstractmethod
def register_strategy_into_strategies_vector(self):
def register_strategy(self) -> StrategiesVector:
pass
def _generate_sharding_spec(self, tensor, dim_partition_dict):
def _generate_sharding_spec(self, tensor: torch.Tensor, dim_partition_dict: Dict[int, int]) -> ShardingSpec:
"""
Generate the sharding spec of the tensor based on the given dim_partition_dict
where the key is the tensor dimension and the value is the mesh dimension for sharding.
"""
sharding_spec = ShardingSpec(device_mesh=self.device_mesh,
entire_shape=tensor.shape,
dim_partition_dict=dim_partition_dict)
return sharding_spec
def _generate_resharding_costs(self, resharding_costs, sharding_spec_for_input):
def _generate_resharding_costs(self, sharding_spec_for_input):
'''
Compute the resharding costs with this specific strategy.
@ -58,8 +74,10 @@ class OperatorHanlder(ABC):
sharding_spec_for_input(ShardingSpec): ShardingSpec of the input node.
'''
# The resharding_cost of weight is counted due to sharing weight cases.
resharding_costs[self.input_index] = []
for stategy in self.input_node.strategies_vector.strategies:
_, _, resharding_cost = self.shape_consistency_manager.shape_consistency(stategy, sharding_spec_for_input)
resharding_costs[self.input_index].append(resharding_cost)
resharding_costs = {}
for input_node, input_spec in zip(self.predecessor_node, sharding_spec_for_input):
resharding_costs[input_node] = []
for strategy in input_node.strategies_vector:
_, _, resharding_cost = self.shape_consistency_manager.shape_consistency(strategy, input_spec)
resharding_costs[input_node].append(resharding_cost)
return resharding_cost

View File

@ -1,6 +1,9 @@
from dataclasses import dataclass
from colossalai.tensor.sharding_spec import ShardingSpec
from typing import Dict, List
from torch.fx.node import Node
__all__ = ['ShardingStrategy', 'StrategiesVector']
@dataclass
@ -30,26 +33,21 @@ class ShardingStrategy:
input_shardings: ShardingSpec = None
class StrategiesVector:
class StrategiesVector(list):
'''
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node(Node): node to build corresponding strategies_vector.
in_nodes(List[Node]): input nodes in the argument list of the node.
following_nodes(List[Node]): the nodes take the target node as their argument.
strategies(List[ShardingStrategy]): enumerate all the possible sharding strategies of the node.
node (Node): node for which the list of sharding strategies are generated.
'''
def __init__(self, node, in_nodes, following_nodes=None, strategies=None):
def __init__(self, node: Node):
super().__init__()
self.node = node
self.in_nodes = in_nodes
self.following_nodes = following_nodes
if strategies is None:
strategies = []
self.strategies = strategies
# fetch its input and output nodes
self.predecessor_nodes = list(node._input_nodes.keys())
self.successor_ndoes = list(node.users.keys())
def check_merge(self):
pass

View File

@ -47,7 +47,9 @@ def test_conv_handler():
# [x, mul, conv, output]
nodes = [node for node in gm.graph.nodes]
strategies_for_input = []
# find the sharding strategies for the input node of the conv node
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
strategies_vector_for_input = StrategiesVector(nodes[1])
sharding_option = (None, 0, 1)
for first_sharding_index in sharding_option:
for second_sharding_index in sharding_option:
@ -68,28 +70,19 @@ def test_conv_handler():
sharding_spec = ShardingSpec(device_mesh=device_mesh,
entire_shape=entire_shape,
sharding_sequence=sharding_sequence)
strategies_for_input.append(sharding_spec)
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
strategies_vector_for_input = StrategiesVector(node=nodes[0],
in_nodes=[nodes[1], 2],
strategies=strategies_for_input)
strategies_vector_for_input.append(sharding_spec)
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
strategies_vector = StrategiesVector(node=nodes[2], in_nodes=[
nodes[1],
])
conv_handler = ConvHandler(input_node=nodes[1],
input_index=0,
weight=dict(gm.named_modules())[nodes[2].name].weight,
output_node=nodes[2],
# generate conv strategy
strategies_vector = StrategiesVector(node=nodes[2])
conv_handler = ConvHandler(node=nodes[2],
device_mesh=device_mesh,
strategies_vector=strategies_vector,
shape_consistency_manager=shape_consistency_manager)
conv_handler.register_strategy_into_strategies_vector()
conv_handler.register_strategy()
# ['S0S1 = S0R x RS1', 'S1S0 = S1R x RS0', 'S0R = S0S1 x S1R', 'S1R = S1S0 x S0R', 'RS1 = RS0 x S0S1', 'RS0 = RS1 x S1S0', 'RS0 = RR x RS0', 'RS1 = RR x RS1', 'RR = RR x RR']
strategy_name_list = [strategy.name for strategy in conv_handler.strategies_vector.strategies]
strategy_name_list = [strategy.name for strategy in conv_handler.strategies_vector]
# SS = SR x RS
assert 'S0S1 = S0R x RS1' in strategy_name_list

View File

@ -47,7 +47,9 @@ def test_dot_handler():
# [x, mul, linear, output]
nodes = [node for node in gm.graph.nodes]
strategies_for_input = []
# find the sharding strategies for the input node of the conv node
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
strategies_vector_for_input = StrategiesVector(node=nodes[1])
sharding_option = (None, 0, 1)
for first_sharding_index in sharding_option:
for second_sharding_index in sharding_option:
@ -67,26 +69,19 @@ def test_dot_handler():
sharding_spec = ShardingSpec(device_mesh=device_mesh,
entire_shape=entire_shape,
sharding_sequence=sharding_sequence)
strategies_for_input.append(sharding_spec)
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
strategies_vector_for_input = StrategiesVector(node=nodes[1], in_nodes=nodes[0], strategies=strategies_for_input)
strategies_vector_for_input.append(sharding_spec)
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
strategies_vector = StrategiesVector(node=nodes[2], in_nodes=[
nodes[1],
])
dot_handler = DotHandler(input_node=nodes[1],
input_index=0,
weight=dict(gm.named_modules())[nodes[2].name].weight,
output_node=nodes[2],
# generate dot strategy
strategies_vector = StrategiesVector(node=nodes[2])
dot_handler = DotHandler(node=nodes[2],
device_mesh=device_mesh,
strategies_vector=strategies_vector,
shape_consistency_manager=shape_consistency_manager)
dot_handler.register_strategy_into_strategies_vector()
strategies_vector = dot_handler.register_strategy()
# ['S0S1 = S0R x RS1', 'S1S0 = S1R x RS0', 'S0R = S0S1 x S1R', 'S1R = S1S0 x S0R', 'RS1 = RS0 x S0S1', 'RS0 = RS1 x S1S0', 'RS0 = RR x RS0', 'RS1 = RR x RS1', 'RR = RR x RR']
strategy_name_list = [strategy.name for strategy in dot_handler.strategies_vector.strategies]
strategy_name_list = [strategy.name for strategy in strategies_vector]
# SS = SR x RS
assert 'S0S1 = S0R x RS1' in strategy_name_list