mirror of https://github.com/hpcaitech/ColossalAI
109 lines
4.2 KiB
Python
109 lines
4.2 KiB
Python
import torch
|
|
from torch.fx import GraphModule
|
|
import torch.nn as nn
|
|
import pytest
|
|
|
|
from colossalai.fx.proxy import ColoProxy
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
|
from colossalai.auto_parallel.solver.conv_handler import ConvHandler
|
|
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
|
|
class ConvModel(nn.Module):
|
|
|
|
def __init__(self, c_in, c_out):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3)
|
|
|
|
def forward(self, x):
|
|
x = x * 2
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
def test_conv_handler():
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
mesh_shape = (2, 2)
|
|
# [[0, 1]
|
|
# [2, 3]]
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
|
entire_shape = torch.Size((4, 16, 64, 64))
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
tracer = ColoTracer()
|
|
model = ConvModel(16, 32)
|
|
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
|
# graph():
|
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
|
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
|
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
|
|
# return conv
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
gm.recompile()
|
|
# [x, mul, conv, output]
|
|
nodes = [node for node in gm.graph.nodes]
|
|
|
|
# find the sharding strategies for the input node of the conv node
|
|
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
|
|
strategies_vector_for_input = StrategiesVector(nodes[1])
|
|
sharding_option = (None, 0, 1)
|
|
for first_sharding_index in sharding_option:
|
|
for second_sharding_index in sharding_option:
|
|
if first_sharding_index is not None and second_sharding_index == first_sharding_index:
|
|
continue
|
|
if first_sharding_index is None:
|
|
first_dim_spec = _DimSpec([])
|
|
else:
|
|
first_dim_spec = _DimSpec([first_sharding_index])
|
|
|
|
if second_sharding_index is None:
|
|
second_dim_spec = _DimSpec([])
|
|
else:
|
|
second_dim_spec = _DimSpec([second_sharding_index])
|
|
|
|
replica_dim_spec = _DimSpec([])
|
|
sharding_sequence = [first_dim_spec, second_dim_spec, replica_dim_spec, replica_dim_spec]
|
|
sharding_spec = ShardingSpec(device_mesh=device_mesh,
|
|
entire_shape=entire_shape,
|
|
sharding_sequence=sharding_sequence)
|
|
strategies_vector_for_input.append(sharding_spec)
|
|
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
|
|
|
|
# generate conv strategy
|
|
strategies_vector = StrategiesVector(node=nodes[2])
|
|
conv_handler = ConvHandler(node=nodes[2],
|
|
device_mesh=device_mesh,
|
|
strategies_vector=strategies_vector,
|
|
shape_consistency_manager=shape_consistency_manager)
|
|
conv_handler.register_strategy()
|
|
|
|
# ['S0S1 = S0R x RS1', 'S1S0 = S1R x RS0', 'S0R = S0S1 x S1R', 'S1R = S1S0 x S0R', 'RS1 = RS0 x S0S1', 'RS0 = RS1 x S1S0', 'RS0 = RR x RS0', 'RS1 = RR x RS1', 'RR = RR x RR']
|
|
strategy_name_list = [strategy.name for strategy in conv_handler.strategies_vector]
|
|
|
|
# SS = SR x RS
|
|
assert 'S0S1 = S0R x RS1' in strategy_name_list
|
|
assert 'S1S0 = S1R x RS0' in strategy_name_list
|
|
|
|
# SR = SS x SR
|
|
assert 'S0R = S0S1 x S1R' in strategy_name_list
|
|
assert 'S1R = S1S0 x S0R' in strategy_name_list
|
|
|
|
# RS = RS x SS
|
|
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
|
assert 'RS1 = RS0 x S0S1' in strategy_name_list
|
|
|
|
# RS = RR x RS
|
|
assert 'RS0 = RR x RS0' in strategy_name_list
|
|
assert 'RS1 = RR x RS1' in strategy_name_list
|
|
|
|
# RR= RR x RR
|
|
assert 'RR = RR x RR' in strategy_name_list
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_conv_handler()
|