ColossalAI/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py

171 lines
10 KiB
Python
Raw Normal View History

from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
__all__ = ['linear_meta_info']
@meta_register.register(torch.nn.functional.linear)
@meta_register.register(torch.nn.Linear)
def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.Linear & torch.nn.functional.linear meta info generator
NOTE: currently we separate the bias part from the biased linear ops, we will consider the memory consumption in add metainfo generator,
but we will hold the bias mechanism in the linear metainfo generator for future use.
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%addmm_default : [#users=1] = call_function[target=torch.ops.aten.addmm.default](args = (None, %input_2, None), kwargs = {})
%zeros_like_default : [#users=3] = call_function[target=torch.ops.aten.zeros_like.default](args = (%addmm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
%sum_dim_int_list : [#users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%zeros_like_default, [None], None), kwargs = {})
%view_default : [#users=1] = call_function[target=torch.ops.aten.view.default](args = (%sum_dim_int_list, [None]), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%view_default,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default,), kwargs = {})
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
%detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
%detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {})
The one without bias is
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%input_2, None), kwargs = {})
%zeros_like_default : [#users=2] = call_function[target=torch.ops.aten.zeros_like.default](args = (%mm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
%mm_default_2 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default_2,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
Returns:
Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and forward inputs
"""
has_bias: bool = False
input_tensor = args[0].data
output_tensor = args[2].data
if len(args) == 4:
weight_tensors = [args[1].data, args[3].data]
else:
weight_tensors = [args[1].data]
# process the dimension of input and output
if len(input_tensor.shape) > 2:
input_tensor: torch.Tensor
input_tensor = input_tensor.view(-1, input_tensor.shape[-1])
if len(output_tensor.shape) > 2:
output_tensor: torch.Tensor
output_tensor = output_tensor.view(-1, output_tensor.shape[-1])
if len(weight_tensors) > 1:
has_bias = True
if len(weight_tensors[0].shape) == 2:
weight_tensor, bias_tensor = weight_tensors
else:
bias_tensor, weight_tensor = weight_tensors
else:
weight_tensor = weight_tensors[0]
if has_bias:
# calculate cost with bias
# the fwd op with compute cost is addmm
# the bwd op with compute cost is mm * 2 and sum.dim_IntList
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.addmm.default](
[bias_tensor, input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,)) + \
flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], (bias_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=0,
buffer=0)
# total cost is to sum the forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
else:
# calculate cost without bias
# the fwd op with compute cost is mm
# the bwd op with compute cost is mm * 2
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.mm.default](
[input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor]),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)
# total cost is to sum the forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in
fwd_in = [input_tensor]
return compute_cost, memory_cost, fwd_in