[autoparallel] Add F.conv metainfo (#2069)

* [fx] metainfo class for auto parallel

* [fx] add unit test for linear metainfo

* [fx] fix bwd param for linear

* [fx] modify unit test

* [fx] modify unit test

* [fx] modify import

* [fx] modify import

* [fx] modify import

* [fx] move meta profiler to auto parallel

* [fx] add conv metainfo class

* [fx] restore profiler

* [fx] restore meta profiler

* [autoparallel] modify unit test

* [fx] modify unit test

* [autoparallel] add batchnorm metainfo class

* [autoparallel] fix batchnorm unit test function declaration

* [fx] restore profiler

* [fx] add relu metainfo class

* [fx] restore profiler

* [autoparallel] modify metainfo input

* [autoparallel] add pooling metainfo

* [autoparallel] add F.linear metainfo generator

* [autoparallel] add binary elementwise metainfo

* [fx] recover profiler

* [autoparallel] fix forward memory calculation

* [autoparallel] modify constants.py

* [autoparallel] remove redundant print

* [autoparallel] add F.conv metainfo

* [autoparallel] linear fix
pull/2083/head
Boyuan Yao 2022-12-06 10:17:57 +08:00 committed by GitHub
parent f123476666
commit cf0268da93
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 68 additions and 6 deletions

View File

@ -22,6 +22,9 @@ __all__ = ['convnd_meta_info']
@meta_register.register(torch.nn.Conv1d)
@meta_register.register(torch.nn.Conv2d)
@meta_register.register(torch.nn.Conv3d)
@meta_register.register(torch.nn.functional.conv1d)
@meta_register.register(torch.nn.functional.conv2d)
@meta_register.register(torch.nn.functional.conv3d)
def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d meta info generator
The atens graph of torch.nn.Convnd with bias is
@ -57,12 +60,19 @@ def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
has_bias: bool = False
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
weight_tensor = next(filter(lambda x: x.name == 'weight', args)).data
weight_tensors = [x.data for x in args if x.type == OperationDataType.PARAM]
# check if conv has bias
if len(args) == 4:
bias_tensor = next(filter(lambda x: x.name == 'bias', args)).data
if len(weight_tensors) > 1:
has_bias = True
# bias tensor's shape only has one dimension
if len(weight_tensors[0].shape) == 1:
bias_tensor, weight_tensor = weight_tensors
else:
weight_tensor, bias_tensor = weight_tensors
else:
weight_tensor = weight_tensors[0]
# construct input args for forward
fwd_args = [None] * 9

View File

@ -143,7 +143,7 @@ def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)

View File

@ -15,6 +15,16 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
class ConvFunctionModule(nn.Module):
def __init__(self, in_channels=4, out_channels=64, kernel_size=3):
super().__init__()
self.conv_weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
def forward(self, input):
return nn.functional.conv2d(input, self.conv_weight)
def _conv_module_mem_test(rank, bias, world_size, port):
"""This function is for conv memory test
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
@ -57,5 +67,47 @@ def test_conv_meta_concrete_info_match(bias=False):
mp.spawn(run_func_module, nprocs=world_size)
def _conv_function_mem_test(rank, world_size, port):
"""This function is for conv function memory test
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
Args:
rank: device rank
bias: indicate whether conv module need bias
world_size: number of devices
port: port for initializing process group
"""
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = ConvFunctionModule().cuda()
input = torch.rand(4, 4, 64, 64).cuda()
input.requires_grad = True
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of target node in computation graph
node_index = 2
# total number of target node strategies
strategy_number = 16
mem_test_for_node_strategy(rank=rank,
model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input],
meta_arg_names=['input'])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_conv_function_concrete_info_match():
world_size = 4
run_func_module = partial(_conv_function_mem_test, world_size=world_size, port=free_port())
mp.spawn(run_func_module, nprocs=world_size)
if __name__ == '__main__':
test_conv_meta_concrete_info_match()
# test_conv_meta_concrete_info_match()
test_conv_function_concrete_info_match()

View File

@ -92,7 +92,7 @@ def _linear_function_mem_test(rank, world_size, port):
model=model,
device_mesh=device_mesh,
node_index=2,
strategy_number=13,
strategy_number=23,
input_args=[input],
meta_arg_names=["input"])