ColossalAI/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py

158 lines
9.7 KiB
Python
Raw Normal View History

from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
__all__ = ['linear_meta_info']
@meta_register.register(torch.nn.Linear)
def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.Linear meta info generator
The atens graph of torch.nn.Linear with bias is
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%addmm_default : [#users=1] = call_function[target=torch.ops.aten.addmm.default](args = (None, %input_2, None), kwargs = {})
%zeros_like_default : [#users=3] = call_function[target=torch.ops.aten.zeros_like.default](args = (%addmm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
%sum_dim_int_list : [#users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%zeros_like_default, [None], None), kwargs = {})
%view_default : [#users=1] = call_function[target=torch.ops.aten.view.default](args = (%sum_dim_int_list, [None]), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%view_default,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default,), kwargs = {})
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
%detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
%detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {})
The one without bias is
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%input_2, None), kwargs = {})
%zeros_like_default : [#users=2] = call_function[target=torch.ops.aten.zeros_like.default](args = (%mm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
%mm_default_2 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default_2,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
Returns:
Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and forward inputs
"""
has_bias: bool = False
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
weight_tensor = next(filter(lambda x: x.name == 'weight', args)).data
# process the dimension of input and output
if len(input_tensor.shape) > 2:
input_tensor: torch.Tensor
input_tensor = input_tensor.view(-1, input_tensor.shape[-1])
if len(output_tensor.shape) > 2:
output_tensor: torch.Tensor
output_tensor = output_tensor.view(-1, output_tensor.shape[-1])
if len(args) == 4:
bias_tensor = next(filter(lambda x: x.name == 'bias', args)).data
has_bias = True
if has_bias:
# calculate cost with bias
# the fwd op with compute cost is addmm
# the bwd op with compute cost is mm * 2 and sum.dim_IntList
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.addmm.default](
[bias_tensor, input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,)) + \
flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], (bias_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
parameter=activation_size(weight_tensor) + activation_size(bias_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor) +
activation_size(bias_tensor),
parameter=activation_size(weight_tensor) + activation_size(bias_tensor),
temp=0,
buffer=0)
# total cost is to sum the forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
else:
# calculate cost without bias
# the fwd op with compute cost is mm
# the bwd op with compute cost is mm * 2
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.mm.default](
[input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)
# total cost is to sum the forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in
fwd_in = [input_tensor]
return compute_cost, memory_cost, fwd_in