mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add conv metainfo class for auto parallel (#1796)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit testpull/1765/head
parent
501a9e9cd2
commit
327d07c44a
|
@ -1 +1,2 @@
|
|||
from .conv import *
|
||||
from .linear import *
|
||||
|
|
|
@ -0,0 +1,122 @@
|
|||
from typing import Callable, Dict, List, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ['convnd_meta_info']
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.Conv1d)
|
||||
@meta_register.register(torch.nn.Conv2d)
|
||||
@meta_register.register(torch.nn.Conv3d)
|
||||
def convnd_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d meta info generator
|
||||
The atens graph of torch.nn.Convnd with bias is
|
||||
graph():
|
||||
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
||||
%convolution_default : [#users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%input_2, None, None, [None, None, None], [None, None, None], [None, None, None], None, [None, None, None], None), kwargs = {})
|
||||
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%convolution_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
||||
%convolution_backward_default : [#users=3] = call_function[target=torch.ops.aten.convolution_backward.default](args = (%zeros_like_default, %detach_default, None, [None], [None, None, None], [None, None, None], [None, None, None], None, [None, None, None], None, [None, None, None]), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
||||
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
||||
%detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
||||
%detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {})
|
||||
|
||||
The atens graph of torch.nn.Convnd without bias is
|
||||
graph():
|
||||
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
||||
%convolution_default : [#users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%input_2, None, None, [None, None], [None, None], [None, None], None, [None, None], None), kwargs = {})
|
||||
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%convolution_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
||||
%convolution_backward_default : [#users=2] = call_function[target=torch.ops.aten.convolution_backward.default](args = (%zeros_like_default, %detach_default, None, [None], [None, None], [None, None], [None, None], None, [None, None], None, [None, None, None]), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
||||
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
has_bias: bool = False
|
||||
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
weight_tensor = next(filter(lambda x: x.name == 'weight', args)).data
|
||||
|
||||
# check if conv has bias
|
||||
if len(args) == 4:
|
||||
bias_tensor = next(filter(lambda x: x.name == 'bias', args)).data
|
||||
has_bias = True
|
||||
|
||||
# construct input args for forward
|
||||
fwd_args = [None] * 9
|
||||
|
||||
# weight and input
|
||||
fwd_args[0] = input_tensor
|
||||
fwd_args[1] = weight_tensor
|
||||
fwd_args[2] = bias_tensor if has_bias else None
|
||||
|
||||
# transpose indicator should be set to False
|
||||
fwd_args[6] = False
|
||||
|
||||
# construct input args for backward
|
||||
bwd_args = [None] * 11
|
||||
|
||||
# weight and input
|
||||
bwd_args[0] = output_tensor
|
||||
bwd_args[1] = input_tensor
|
||||
bwd_args[2] = weight_tensor
|
||||
bwd_args[-1] = [True, True, True] if has_bias else [True, True, False]
|
||||
|
||||
# calculate cost
|
||||
# the fwd op with compute cost is convolution.default
|
||||
# the bwd op with compute cost is convolution_backward.default
|
||||
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.convolution.default](fwd_args, (output_tensor,))
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.convolution_backward.default](bwd_args, (input_tensor, weight_tensor, bias_tensor)) if has_bias else \
|
||||
flop_mapping[torch.ops.aten.convolution_backward.default](bwd_args, (input_tensor, weight_tensor))
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# TODO: use profiler to check conv temp memory
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
|
||||
parameter=activation_size(weight_tensor) +
|
||||
activation_size(bias_tensor) if has_bias else activation_size(weight_tensor),
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor) +
|
||||
activation_size(bias_tensor) if has_bias else activation_size(input_tensor) +
|
||||
activation_size(weight_tensor),
|
||||
parameter=activation_size(weight_tensor) +
|
||||
activation_size(bias_tensor) if has_bias else activation_size(weight_tensor),
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = [input_tensor]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
|
@ -59,7 +59,7 @@ def linear_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.
|
|||
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and save input flag
|
||||
Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
has_bias: bool = False
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
|
||||
def _conv_module_mem_test(rank, bias, world_size, port):
|
||||
"""This function is for conv memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.Conv2d(4, 64, 3, padding=1, bias=bias)).cuda()
|
||||
input = torch.rand(4, 4, 64, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
strategy_number = 16
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_conv_meta_concrete_info_match(bias=False):
|
||||
world_size = 4
|
||||
run_func_module = partial(_conv_module_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_conv_meta_concrete_info_match()
|
|
@ -20,48 +20,15 @@ if torch.__version__ >= '1.12.0':
|
|||
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='PyTorch version is too low')
|
||||
@parameterize('bias', [True, False])
|
||||
def test_linear_metainfo(bias):
|
||||
model = nn.Sequential(nn.Linear(16, 32, bias=bias).to('meta'))
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(2, 2, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = LinearModuleHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# build strategy
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# assert module is registered
|
||||
assert meta_register.has(linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__)
|
||||
|
||||
# check metainfo
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
try:
|
||||
metainfo = MetaInfo(strategy,
|
||||
linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__)
|
||||
|
||||
except:
|
||||
raise RuntimeError(f"Failed to compute metainfo for {strategy}")
|
||||
|
||||
|
||||
def _linear_mem_test(rank, bias, world_size, port):
|
||||
def _linear_module_mem_test(rank, bias, world_size, port):
|
||||
"""This function is for linear memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed
|
||||
in unit test.
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
bias (bool, optional): Indicate whether we need bias for Linear. Defaults to True.
|
||||
rank: device rank
|
||||
bias: indicate whether linear module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
@ -87,11 +54,9 @@ def _linear_mem_test(rank, bias, world_size, port):
|
|||
@rerun_if_address_is_in_use()
|
||||
def test_linear_meta_concrete_info_match(bias=False):
|
||||
world_size = 4
|
||||
run_func_module = partial(_linear_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
run_func_module = partial(_linear_module_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_linear_metainfo()
|
||||
# _linear_mem_test(bias=True)
|
||||
test_linear_meta_concrete_info_match()
|
||||
|
|
Loading…
Reference in New Issue