2023-06-23 10:00:22 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
2023-11-10 02:15:16 +00:00
import warnings
2023-11-03 05:32:43 +00:00
from abc import ABC , abstractmethod
2023-06-23 10:00:22 +00:00
import torch . nn as nn
2023-07-10 02:48:53 +00:00
from colossalai . lazy import LazyInitContext
2023-11-10 02:15:16 +00:00
from . _operation import hook_paramter_in_backward
2023-07-10 02:48:53 +00:00
2023-11-03 05:32:43 +00:00
from . utils import SeqParallelUtils
__all__ = [ " FusedLayerNorm " , " FusedRMSNorm " , " LayerNorm " , " RMSNorm " , " BaseLayerNorm " ]
2023-06-23 10:00:22 +00:00
2023-11-10 02:15:16 +00:00
try :
from apex . contrib . layer_norm . layer_norm import FastLayerNorm
EnableFastLayerNorm = True
except ImportError :
EnableFastLayerNorm = False
try :
from apex . normalization import FusedLayerNorm as ApexFusedLayerNorm
from apex . normalization import FusedRMSNorm as ApexFusedRMSNorm
except ImportError :
warnings . warn (
" Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel "
)
2023-06-26 10:05:00 +00:00
FAST_LAYERNORM_SUPPORTED_SIZE = [
2023-09-19 06:20:26 +00:00
1024 ,
1536 ,
2048 ,
2304 ,
3072 ,
3840 ,
4096 ,
5120 ,
6144 ,
8192 ,
10240 ,
12288 ,
12800 ,
15360 ,
16384 ,
18432 ,
20480 ,
24576 ,
25600 ,
30720 ,
32768 ,
40960 ,
49152 ,
65536 ,
2023-06-26 10:05:00 +00:00
]
2023-06-23 10:00:22 +00:00
2023-11-10 02:15:16 +00:00
if EnableFastLayerNorm :
class FastLayerNormWithHook ( FastLayerNorm ) :
def __init__ ( self , hidden_size , eps = 0.00001 ) :
super ( ) . __init__ ( hidden_size , eps )
def forward ( self , input ) :
output = super ( ) . forward ( input )
output = hook_paramter_in_backward ( output , self . weight , self . bias )
return output
class FusedLayerNormWithHook ( ApexFusedLayerNorm ) :
def __init__ ( self , normalized_shape , eps = 0.00001 , elementwise_affine = True ) :
super ( ) . __init__ ( normalized_shape , eps , elementwise_affine )
def forward ( self , input ) :
output = super ( ) . forward ( input )
output = hook_paramter_in_backward ( output , self . weight , self . bias )
return output
class FusedRMSNormWithHook ( ApexFusedRMSNorm ) :
def __init__ ( self , normalized_shape , eps = 0.00001 , elementwise_affine = True ) :
super ( ) . __init__ ( normalized_shape , eps , elementwise_affine )
def forward ( self , input ) :
output = super ( ) . forward ( input )
output = hook_paramter_in_backward ( output , self . weight )
return output
2023-06-23 10:00:22 +00:00
2023-11-03 05:32:43 +00:00
class BaseLayerNorm ( ABC ) :
@abstractmethod
def from_native_module ( module : nn . Module , sp_partial_derived : bool = False ) :
"""
Convert a native PyTorch layer normalization module to a specific layer normalization module ,
and optionally mark parameters for gradient aggregation .
Args :
module ( nn . Module ) : The native PyTorch layer normalization module to be converted .
sp_partial_derived ( bool ) : Whether this module ' s gradients are partially derived in sequence parallelism.
Returns :
nn . Module : The specific layer normalization module .
Raises :
AssertionError : If the provided module is not an instance of the supported layer normalization type .
"""
class RMSNorm ( BaseLayerNorm ) :
r """
This is a wrapper around the RMSNorm . It is meant to be used only with the from_native_module interface .
"""
def __init__ ( self ) - > None :
raise NotImplementedError (
" FusedLayerNorm is not implemented as a physical class. "
" It is meant to be used only with the from_native_module interface to convert a native RMSNorm module to colossalai layer norm module. "
)
@staticmethod
def from_native_module ( module : nn . Module , sp_partial_derived : bool = False , * args , * * kwargs ) - > nn . Module :
"""
Convert a native RMSNorm module to colossalai layer norm module ,
and optionally mark parameters for gradient aggregation .
Args :
module ( nn . Module ) : The native RMSNorm module to be converted .
sp_partial_derived ( bool ) : Whether this module ' s gradients are partially derived in sequence parallelism.
Returns :
nn . Module : The RMSNorm module .
"""
LazyInitContext . materialize ( module )
if sp_partial_derived :
# Since gradients are computed using only a subset of the data,
# aggregation of these gradients is necessary during backpropagation.
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
SeqParallelUtils . marked_as_sp_partial_derived_param ( module . weight )
return module
class LayerNorm ( BaseLayerNorm ) :
r """
This is a wrapper around the torch . nn . LayerNorm . It is meant to be used only with the from_native_module interface .
"""
def __init__ ( self ) - > None :
raise NotImplementedError (
" LayerNorm is not implemented as a physical class. "
" It is meant to be used only with the from_native_module interface to convert a native pytorch layer norm module to colossalai layer norm module. "
)
@staticmethod
def from_native_module ( module : nn . LayerNorm , sp_partial_derived : bool = False , * args , * * kwargs ) - > nn . Module :
r """
Convert a native pytorch layer norm module to colossalai layer norm module ,
and optionally marking parameters for gradient aggregation .
Args :
module ( nn . LayerNorm ) : The native PyTorch LayerNorm module to be converted .
sp_partial_derived ( bool ) : Whether this module ' s gradients are partially derived in sequence parallelism.
Returns :
nn . Module : The LayerNorm module .
Raises :
AssertionError : If the provided module is not an instance of nn . LayerNorm .
"""
assert isinstance ( module , nn . LayerNorm ) , " Only support conversion from nn.LayerNorm. "
LazyInitContext . materialize ( module )
if sp_partial_derived :
# Since gradients are computed using only a subset of the data,
# aggregation of these gradients is necessary during backpropagation.
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
SeqParallelUtils . marked_as_sp_partial_derived_param ( module . weight )
SeqParallelUtils . marked_as_sp_partial_derived_param ( module . bias )
return module
class FusedLayerNorm ( BaseLayerNorm ) :
2023-06-23 10:00:22 +00:00
r """
2023-06-26 10:05:00 +00:00
This is a wrapper around the apex fused layernorm implementation . It is meant to be used only with the from_native_module interface .
2023-06-23 10:00:22 +00:00
"""
2023-06-26 10:05:00 +00:00
def __init__ ( self ) - > None :
raise NotImplementedError (
2023-09-19 06:20:26 +00:00
" FusedLayerNorm is not implemented as a physical class. "
2023-11-03 05:32:43 +00:00
" It is meant to be used only with the from_native_module interface convert a native pytorch layer norm module to FusedLayerNorm module provided by apex. "
2023-06-26 10:05:00 +00:00
)
2023-06-23 10:00:22 +00:00
@staticmethod
2023-11-03 05:32:43 +00:00
def from_native_module ( module : nn . LayerNorm , sp_partial_derived : bool = False , * args , * * kwargs ) - > nn . Module :
2023-06-23 10:00:22 +00:00
r """
2023-11-03 05:32:43 +00:00
Convert a native pytorch layer norm module to FusedLayerNorm module provided by apex ,
and optionally marking parameters for gradient aggregation .
Args :
module ( nn . LayerNorm ) : The native PyTorch LayerNorm module to be converted .
sp_partial_derived ( bool ) : Whether this module ' s gradients are partially derived in sequence parallelism.
Returns :
nn . Module : Union [ FastLayerNorm , FusedLayerNorm ] .
Raises :
AssertionError : If the provided module is not an instance of nn . LayerNorm .
2023-06-23 10:00:22 +00:00
"""
2023-06-26 10:05:00 +00:00
2023-07-10 02:48:53 +00:00
LazyInitContext . materialize ( module )
2023-06-26 10:05:00 +00:00
# get the attributes of the module
2023-06-23 10:00:22 +00:00
normalized_shape = module . normalized_shape
eps = module . eps
2023-06-26 10:05:00 +00:00
elementwise_affine = module . elementwise_affine
2023-06-23 10:00:22 +00:00
dtype = module . weight . dtype
device = module . weight . device
2023-06-26 10:05:00 +00:00
# pick the suitable layernorm implementation
use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE
if use_fast_ln :
2023-11-10 02:15:16 +00:00
if EnableFastLayerNorm :
ApexFusedLayerNorm = FastLayerNormWithHook
else :
2023-06-26 10:05:00 +00:00
# fall back to the normal fused layernorm is not built
2023-11-10 02:15:16 +00:00
ApexFusedLayerNorm = FusedLayerNormWithHook
2023-06-26 10:05:00 +00:00
else :
2023-11-10 02:15:16 +00:00
ApexFusedLayerNorm = FusedLayerNormWithHook
2023-06-23 10:00:22 +00:00
2023-09-19 06:20:26 +00:00
layernorm = (
ApexFusedLayerNorm ( normalized_shape , eps = eps , elementwise_affine = elementwise_affine ) . to ( dtype ) . to ( device )
)
2023-07-20 02:39:06 +00:00
layernorm . weight = module . weight
layernorm . bias = module . bias
2023-11-03 05:32:43 +00:00
if sp_partial_derived :
# Since gradients are computed using only a subset of the data,
# aggregation of these gradients is necessary during backpropagation.
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
SeqParallelUtils . marked_as_sp_partial_derived_param ( layernorm . weight )
SeqParallelUtils . marked_as_sp_partial_derived_param ( layernorm . bias )
2023-06-30 01:32:37 +00:00
return layernorm
2023-11-03 05:32:43 +00:00
class FusedRMSNorm ( BaseLayerNorm ) :
2023-06-30 01:32:37 +00:00
"""
This is a wrapper around the apex fused rms norm implementation . It is meant to be used only with the from_native_module interface .
"""
def __init__ ( self ) - > None :
raise NotImplementedError (
2023-09-19 06:20:26 +00:00
" FusedRMSNorm is not implemented as a physical class. "
2023-11-03 05:32:43 +00:00
" It is meant to be used only with the from_native_module interface to Convert a native RMSNorm module to FusedRMSNorm module provided by apex. "
2023-06-30 01:32:37 +00:00
)
2023-11-10 02:15:16 +00:00
2023-06-30 01:32:37 +00:00
@staticmethod
2023-11-03 05:32:43 +00:00
def from_native_module ( module : nn . Module , sp_partial_derived : bool = False , * args , * * kwargs ) - > nn . Module :
r """
Convert a native RMSNorm module module to FusedRMSNorm module provided by apex ,
and optionally marking parameters for gradient aggregation .
Args :
module ( nn . LayerNorm ) : The native PyTorch LayerNorm module to be converted .
sp_partial_derived ( bool ) : Whether this module ' s gradients are partially derived in sequence parallelism.
Returns :
nn . Module : FusedRMSNorm module .
"""
2023-06-30 01:32:37 +00:00
try :
from apex . normalization import FusedRMSNorm as ApexFusedRMSNorm
except ImportError :
raise ImportError (
2023-09-19 06:20:26 +00:00
" Please install apex from source (https://github.com/NVIDIA/apex) to use the fused RMS normalization kernel "
2023-06-30 01:32:37 +00:00
)
2023-07-10 02:48:53 +00:00
LazyInitContext . materialize ( module )
2023-06-30 01:32:37 +00:00
# to check if it is huggingface LlamaRMSNorm
if module . __class__ . __name__ == " LlamaRMSNorm " :
normalized_shape = module . weight . shape [ 0 ]
eps = module . variance_epsilon
elementwise_affine = True
else :
# get the attributes of the module
normalized_shape = module . normalized_shape
eps = module . eps
elementwise_affine = module . elementwise_affine
2023-11-10 02:15:16 +00:00
rmsnorm = FusedRMSNormWithHook ( normalized_shape = normalized_shape , eps = eps , elementwise_affine = elementwise_affine )
2023-06-30 01:32:37 +00:00
2023-07-20 02:39:06 +00:00
rmsnorm . weight = module . weight
2023-06-30 01:32:37 +00:00
2023-11-03 05:32:43 +00:00
if sp_partial_derived :
# Since gradients are computed using only a subset of the data,
# aggregation of these gradients is necessary during backpropagation.
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
SeqParallelUtils . marked_as_sp_partial_derived_param ( rmsnorm . weight )
2023-06-30 01:32:37 +00:00
return rmsnorm