You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/layer/normalization.py

109 lines
4.0 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
from colossalai.lazy import LazyInitContext
__all__ = ['FusedLayerNorm', 'FusedRMSNorm']
FAST_LAYERNORM_SUPPORTED_SIZE = [
1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480, 24576,
25600, 30720, 32768, 40960, 49152, 65536
]
class FusedLayerNorm():
r"""
This is a wrapper around the apex fused layernorm implementation. It is meant to be used only with the from_native_module interface.
"""
def __init__(self) -> None:
raise NotImplementedError(
'FusedLayerNorm is not implemented as a physical class. '
'It is meant to be used only with the from_native_module interface to wrap the fused layernorm implementation provided by apex.'
)
@staticmethod
def from_native_module(module: nn.LayerNorm, *args, **kwargs) -> nn.Module:
r"""
Convert a native pytorch layer norm module to colossalai layer norm module
"""
# check if apex is installed
try:
import apex
except ImportError:
raise ImportError(
'Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel')
LazyInitContext.materialize(module)
# get the attributes of the module
normalized_shape = module.normalized_shape
eps = module.eps
elementwise_affine = module.elementwise_affine
dtype = module.weight.dtype
device = module.weight.device
# pick the suitable layernorm implementation
use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE
if use_fast_ln:
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm as ApexFusedLayerNorm
except ImportError:
# fall back to the normal fused layernorm is not built
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
else:
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
layernorm = ApexFusedLayerNorm(normalized_shape, eps=eps,
elementwise_affine=elementwise_affine).to(dtype).to(device)
with torch.no_grad():
# copy weight and bias
layernorm.weight.copy_(module.weight)
layernorm.bias.copy_(module.bias)
return layernorm
class FusedRMSNorm():
"""
This is a wrapper around the apex fused rms norm implementation. It is meant to be used only with the from_native_module interface.
"""
def __init__(self) -> None:
raise NotImplementedError(
'FusedRMSNorm is not implemented as a physical class. '
'It is meant to be used only with the from_native_module interface to wrap the fused rms norm implementation provided by apex.'
)
@staticmethod
def from_native_module(module: nn.Module, *args, **kwargs) -> nn.Module:
try:
from apex.normalization import FusedRMSNorm as ApexFusedRMSNorm
except ImportError:
raise ImportError(
'Please install apex from source (https://github.com/NVIDIA/apex) to use the fused RMS normalization kernel'
)
LazyInitContext.materialize(module)
# to check if it is huggingface LlamaRMSNorm
if module.__class__.__name__ == "LlamaRMSNorm":
normalized_shape = module.weight.shape[0]
eps = module.variance_epsilon
elementwise_affine = True
else:
# get the attributes of the module
normalized_shape = module.normalized_shape
eps = module.eps
elementwise_affine = module.elementwise_affine
rmsnorm = ApexFusedRMSNorm(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine)
with torch.no_grad():
# copy weight and bias
rmsnorm.weight.copy_(module.weight)
return rmsnorm