mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] support lazy init (#4202)
* [shardformer] support lazy init * [shardformer] linear support lazy init * [shardformer] embedding support lazy init * [shardformer] norm support lazy init * [shardformer] fused linear support lazy init * [test] update shardformer test layer * [test] shardformer with lazy init fit ddp * [lazy] hotfix deepcopy of param * [shardformer] fix bert policy and update test * [shardformer] fix bloom policy and update test * [shardformer] fix opt policy and update test * [shardformer] fix t5 policy and update test * [shardformer] fix gpt2 policy and update test * [shardformer] fix llama policy and update testpull/4445/head
parent
f3bcc292c8
commit
890774b2fb
|
@ -6,6 +6,7 @@ import torch
|
|||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.nn import Parameter
|
||||
from torch.utils._pytree import tree_map
|
||||
|
||||
from colossalai._analyzer._subclasses import MetaTensor
|
||||
|
@ -99,8 +100,11 @@ def _convert_cls(tensor: 'LazyTensor', target: torch.Tensor) -> torch.Tensor:
|
|||
Returns:
|
||||
torch.Tensor: the converted tensor
|
||||
"""
|
||||
cls_to_become = nn.Parameter if isinstance(tensor, nn.Parameter) else torch.Tensor
|
||||
cls_to_become = Parameter if isinstance(tensor, Parameter) else torch.Tensor
|
||||
tensor.__class__ = cls_to_become
|
||||
if cls_to_become is Parameter:
|
||||
# to fit UninitializedParameter
|
||||
delattr(tensor, '_is_param')
|
||||
tensor.data = target
|
||||
tensor.requires_grad = target.requires_grad
|
||||
# subclass of torch.Tensor does not have tolist() method
|
||||
|
@ -198,10 +202,10 @@ class LazyTensor(torch.Tensor):
|
|||
def clean(self) -> None:
|
||||
"""Clean all stored operations, meta data and materialized data, which prevents memory leaking. This should be called after all tensors are materialized.
|
||||
"""
|
||||
self._factory_method = None
|
||||
self._op_buffer = None
|
||||
self._materialized_data = None
|
||||
self._meta_data = None
|
||||
delattr(self, '_factory_method')
|
||||
delattr(self, '_op_buffer')
|
||||
delattr(self, '_materialized_data')
|
||||
delattr(self, '_meta_data')
|
||||
|
||||
@staticmethod
|
||||
def _replace_with_materialized(x):
|
||||
|
@ -350,20 +354,19 @@ class LazyTensor(torch.Tensor):
|
|||
def factory_fn():
|
||||
# if self is materialized, return self
|
||||
new_tensor = self.materialize() if type(self) is LazyTensor else self
|
||||
copied = new_tensor.detach().clone()
|
||||
if new_tensor.requires_grad:
|
||||
copied.requires_grad_()
|
||||
return copied
|
||||
return _copy_tensor(new_tensor, new_tensor.requires_grad)
|
||||
|
||||
if self._materialized_data is not None:
|
||||
# self is early materialized
|
||||
copied = self._materialized_data.detach().clone()
|
||||
if self.requires_grad:
|
||||
copied.requires_grad_()
|
||||
copied = _copy_tensor(self._materialized_data, self.requires_grad)
|
||||
target = LazyTensor(lambda: None, concrete_data=copied)
|
||||
else:
|
||||
target = LazyTensor(factory_fn, meta_data=self._meta_data)
|
||||
|
||||
if isinstance(self, Parameter):
|
||||
# hack isinstance check of parameter
|
||||
target._is_param = True
|
||||
|
||||
memo[id(self)] = target
|
||||
return target
|
||||
|
||||
|
@ -408,6 +411,10 @@ class LazyTensor(torch.Tensor):
|
|||
def __hash__(self):
|
||||
return id(self)
|
||||
|
||||
def __rpow__(self, other):
|
||||
dtype = torch.result_type(self, other)
|
||||
return torch.tensor(other, dtype=dtype, device=self.device)**self
|
||||
|
||||
|
||||
class LazyInitContext:
|
||||
"""Context manager for lazy initialization. Enables initializing the model without allocating real memory.
|
||||
|
@ -536,7 +543,7 @@ class LazyInitContext:
|
|||
|
||||
@staticmethod
|
||||
def materialize(module: nn.Module, verbose: bool = False) -> nn.Module:
|
||||
"""Initialize all ``nn.Parameter`` from ``LazyTensor``. This function will modify the module in-place.
|
||||
"""Initialize all ``Parameter`` from ``LazyTensor``. This function will modify the module in-place.
|
||||
|
||||
Args:
|
||||
module (nn.Module): Target ``nn.Module``
|
||||
|
@ -553,7 +560,7 @@ class LazyInitContext:
|
|||
device_mesh: DeviceMesh,
|
||||
sharding_spec_dict: Dict[str, ShardingSpec],
|
||||
verbose: bool = False) -> nn.Module:
|
||||
"""Distribute all ``nn.Parameter`` from ``LazyTensor``. This function will modify the module in-place.
|
||||
"""Distribute all ``Parameter`` from ``LazyTensor``. This function will modify the module in-place.
|
||||
|
||||
Args:
|
||||
module (nn.Module): Target ``nn.Module``
|
||||
|
@ -625,3 +632,9 @@ def _is_int_tuple(args) -> bool:
|
|||
if not isinstance(x, int):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def _copy_tensor(tensor: Tensor, requires_grad: bool) -> Tensor:
|
||||
copied = tensor.data.clone()
|
||||
copied.requires_grad = requires_grad
|
||||
return copied
|
||||
|
|
|
@ -9,8 +9,8 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn import init as init
|
||||
from colossalai.nn.layer.utils import divide
|
||||
from colossalai.tensor.d_tensor.api import shard_colwise, shard_rowwise, sharded_tensor_to_param
|
||||
|
@ -95,6 +95,7 @@ class Embedding1D(ParallelModule):
|
|||
r"""
|
||||
Build a 1D parallelized Embedding from a native nn.Embedding module.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes
|
||||
num_embedding = module.num_embeddings
|
||||
embedding_dim = module.embedding_dim
|
||||
|
@ -223,6 +224,7 @@ class VocabParallelEmbedding1D(ParallelModule):
|
|||
r"""
|
||||
Convert a native pytorch embedding module to a parallel module.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the origin attributes
|
||||
num_embeddings = module.num_embeddings
|
||||
embedding_dim = module.embedding_dim
|
||||
|
@ -243,6 +245,7 @@ class VocabParallelEmbedding1D(ParallelModule):
|
|||
process_group=process_group,
|
||||
*args,
|
||||
**kwargs)
|
||||
|
||||
with torch.no_grad():
|
||||
# shard and slice the weight along the vocabulary(num_embeddings) dimension
|
||||
# the shape of the weight is (num_embeddings, embedding_dim)
|
||||
|
|
|
@ -12,6 +12,7 @@ from torch import Tensor
|
|||
from torch.distributed import ProcessGroup
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn import init as init
|
||||
from colossalai.nn.layer.utils import divide
|
||||
from colossalai.tensor.d_tensor import shard_colwise, shard_rowwise, sharded_tensor_to_param
|
||||
|
@ -106,6 +107,7 @@ class Linear1D_Col(ParallelModule):
|
|||
r"""
|
||||
Convert a native PyTorch linear layer to a parallelized linear layer.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes
|
||||
in_features = module.in_features
|
||||
out_features = module.out_features
|
||||
|
@ -242,6 +244,7 @@ class Linear1D_Row(ParallelModule):
|
|||
r"""
|
||||
Convert a native PyTorch linear layer to a parallelized linear layer.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes
|
||||
in_features = module.in_features
|
||||
out_features = module.out_features
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.lazy import LazyInitContext
|
||||
|
||||
__all__ = ['FusedLayerNorm', 'FusedRMSNorm']
|
||||
|
||||
FAST_LAYERNORM_SUPPORTED_SIZE = [
|
||||
|
@ -35,6 +37,7 @@ class FusedLayerNorm():
|
|||
raise ImportError(
|
||||
'Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel')
|
||||
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes of the module
|
||||
normalized_shape = module.normalized_shape
|
||||
eps = module.eps
|
||||
|
@ -84,6 +87,7 @@ class FusedRMSNorm():
|
|||
'Please install apex from source (https://github.com/NVIDIA/apex) to use the fused RMS normalization kernel'
|
||||
)
|
||||
|
||||
LazyInitContext.materialize(module)
|
||||
# to check if it is huggingface LlamaRMSNorm
|
||||
if module.__class__.__name__ == "LlamaRMSNorm":
|
||||
normalized_shape = module.weight.shape[0]
|
||||
|
|
|
@ -12,6 +12,7 @@ from torch import Tensor
|
|||
from torch.distributed import ProcessGroup
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.nn import init as init
|
||||
from colossalai.nn.layer.utils import divide
|
||||
from colossalai.tensor.d_tensor.api import (
|
||||
|
@ -231,6 +232,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|||
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication.
|
||||
n_fused (int): The number of layers to be fused. In GPT2, Q,K,V are fused in one weight.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes
|
||||
in_features = module.weight.shape[0]
|
||||
out_features = module.weight.shape[1]
|
||||
|
@ -380,6 +382,7 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
|
|||
r"""
|
||||
Convert a native PyTorch linear layer to a parallelized linear layer.
|
||||
"""
|
||||
LazyInitContext.materialize(module)
|
||||
# get the attributes
|
||||
in_features = module.weight.shape[0]
|
||||
out_features = module.weight.shape[1]
|
||||
|
@ -428,9 +431,9 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
|
|||
src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0)
|
||||
|
||||
origin_device = self.bias.device
|
||||
self.bias = self.bias.cuda()
|
||||
self.bias.data = self.bias.cuda()
|
||||
dist.broadcast(self.bias, src=src_rank, group=self.process_group)
|
||||
self.bias = self.bias.to(origin_device)
|
||||
self.bias.data = self.bias.to(origin_device)
|
||||
|
||||
def forward(self, input_: Tensor) -> Tensor:
|
||||
# Set up backprop all-reduce.
|
||||
|
|
|
@ -46,11 +46,12 @@ class BertPolicy(Policy):
|
|||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
# TODO:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
|
@ -229,10 +230,11 @@ class BertForPreTrainingPolicy(BertPolicy):
|
|||
return []
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
|
@ -269,10 +271,11 @@ class BertLMHeadModelPolicy(BertPolicy):
|
|||
return []
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
|
@ -288,10 +291,11 @@ class BertForMaskedLMPolicy(BertPolicy):
|
|||
return module_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
|
|
|
@ -17,11 +17,12 @@ class BloomPolicy(Policy):
|
|||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
|
@ -128,16 +129,13 @@ class BloomForCausalLMPolicy(BloomPolicy):
|
|||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"transformer.word_embeddings.weight": "lm_head.weight"}
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"transformer.word_embeddings.weight": "lm_head.weight"}
|
||||
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
|
||||
if not isinstance(param, nn.Parameter):
|
||||
param = nn.Parameter(param)
|
||||
|
||||
# tie weights
|
||||
setattr_(self.model, v, param)
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
# tie weights
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
|
|
|
@ -21,11 +21,12 @@ class GPT2Policy(Policy):
|
|||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
|
@ -142,10 +143,11 @@ class GPT2LMHeadModelPolicy(GPT2Policy):
|
|||
return module_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"transformer.wte.weight": "lm_head.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"transformer.wte.weight": "lm_head.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
|
@ -172,10 +174,11 @@ class GPT2DoubleHeadsModelPolicy(GPT2Policy):
|
|||
return module_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"transformer.wte.weight": "lm_head.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"transformer.wte.weight": "lm_head.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
|
|
|
@ -15,13 +15,14 @@ class LlamaPolicy(Policy):
|
|||
pass
|
||||
|
||||
def preprocess(self):
|
||||
# Resize embedding
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
# Resize embedding
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
|
||||
return self.model
|
||||
|
||||
|
|
|
@ -19,11 +19,12 @@ class OPTPolicy(Policy):
|
|||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
|
@ -116,14 +117,15 @@ class OPTForCausalLMPolicy(OPTPolicy):
|
|||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {
|
||||
'model.decoder.embed_tokens': 'lm_head',
|
||||
}
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {
|
||||
'model.decoder.embed_tokens': 'lm_head',
|
||||
}
|
||||
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
|
||||
return self.model
|
||||
|
||||
|
|
|
@ -24,11 +24,12 @@ class T5BasePolicy(Policy):
|
|||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
|
@ -164,11 +165,12 @@ class T5BasePolicy(Policy):
|
|||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = [["shared", "encoder.embed_tokens"], ["shared", "decoder.embed_tokens"]]
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = [["shared", "encoder.embed_tokens"], ["shared", "decoder.embed_tokens"]]
|
||||
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
return self.model
|
||||
|
||||
|
||||
|
@ -211,13 +213,13 @@ class T5ForConditionalGenerationPolicy(T5BasePolicy):
|
|||
|
||||
def postprocess(self):
|
||||
super().postprocess()
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = {"shared": "lm_head"}
|
||||
|
||||
binding_map = {"shared": "lm_head"}
|
||||
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
for k, v in binding_map.items():
|
||||
src_mod = getattr_(self.model, k)
|
||||
dst_mod = getattr_(self.model, v)
|
||||
dst_mod.weight = src_mod.weight
|
||||
|
||||
return self.model
|
||||
|
||||
|
@ -239,11 +241,12 @@ class T5EncoderPolicy(T5BasePolicy):
|
|||
return base_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = [
|
||||
["shared", "encoder.embed_tokens"],
|
||||
]
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
binding_map = [
|
||||
["shared", "encoder.embed_tokens"],
|
||||
]
|
||||
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
for k, v in binding_map:
|
||||
mod = getattr_(self.model, k)
|
||||
setattr_(self.model, v, mod)
|
||||
return self.model
|
||||
|
|
|
@ -3,7 +3,7 @@ from typing import Any, Callable, Dict, List, Union
|
|||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
|
||||
from colossalai.lazy import LazyTensor
|
||||
from colossalai.lazy import LazyInitContext
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from ..policies.auto_policy import get_autopolicy
|
||||
|
@ -192,10 +192,4 @@ class ModelSharder(object):
|
|||
r"""
|
||||
Materialize the model if lazy initialization is used
|
||||
"""
|
||||
for p in self.model.parameters():
|
||||
if isinstance(p, LazyTensor):
|
||||
p.materialize()
|
||||
|
||||
for b in self.model.buffers():
|
||||
if isinstance(b, LazyTensor):
|
||||
b.materialize()
|
||||
LazyInitContext.materialize(self.model)
|
||||
|
|
|
@ -1,15 +1,22 @@
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import Embedding1D
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_embedding_1d():
|
||||
embedding = nn.Embedding(32, 128).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_embedding_1d(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
embedding = nn.Embedding(32, 128).cuda()
|
||||
embedding_1d = Embedding1D.from_native_module(embedding, process_group=None)
|
||||
|
||||
assert embedding_1d.weight.shape == torch.Size([32, 64])
|
||||
|
|
|
@ -1,14 +1,21 @@
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import FusedLayerNorm
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_layernorm():
|
||||
norm = nn.LayerNorm(128, 0.00001).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_layernorm(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
norm = nn.LayerNorm(128, 0.00001).cuda()
|
||||
norm1d = FusedLayerNorm.from_native_module(norm, process_group=None)
|
||||
|
||||
assert norm1d.weight.shape == torch.Size([128])
|
||||
|
|
|
@ -1,16 +1,23 @@
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
||||
from colossalai.tensor.d_tensor import is_distributed_tensor
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_linear_1d_col():
|
||||
linear = nn.Linear(32, 128).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_linear_1d_col(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
linear = nn.Linear(32, 128).cuda()
|
||||
linear_col = Linear1D_Col.from_native_module(linear, process_group=None, gather_output=True)
|
||||
|
||||
# ensure that the parameters are distributed
|
||||
|
@ -50,8 +57,12 @@ def check_linear_1d_col():
|
|||
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
||||
|
||||
|
||||
def check_linear_1d_row():
|
||||
linear = nn.Linear(32, 128).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_linear_1d_row(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
linear = nn.Linear(32, 128).cuda()
|
||||
linear_row = Linear1D_Row.from_native_module(linear, process_group=None, parallel_input=False)
|
||||
|
||||
assert linear_row.weight.shape == torch.Size([128, 16])
|
||||
|
@ -83,9 +94,13 @@ def check_linear_1d_row():
|
|||
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
||||
|
||||
|
||||
def check_linear_col_plus_row():
|
||||
linear_1 = nn.Linear(32, 128).cuda()
|
||||
linear_2 = nn.Linear(128, 32).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_linear_col_plus_row(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
linear_1 = nn.Linear(32, 128).cuda()
|
||||
linear_2 = nn.Linear(128, 32).cuda()
|
||||
linear_col = Linear1D_Col.from_native_module(linear_1, process_group=None, gather_output=False)
|
||||
linear_row = Linear1D_Row.from_native_module(linear_2, process_group=None, parallel_input=True)
|
||||
|
||||
|
|
|
@ -1,12 +1,15 @@
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
# This code is copied from https://github.com/huggingface/transformers
|
||||
|
@ -50,8 +53,12 @@ def rearrange(tensor: torch.Tensor, dim: int):
|
|||
return rearanged_tensor
|
||||
|
||||
|
||||
def check_linear_conv_1d_col():
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_linear_conv_1d_col(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear_conv_col = GPT2FusedLinearConv1D_Col.from_native_module(linear,
|
||||
process_group=None,
|
||||
gather_output=True,
|
||||
|
@ -80,8 +87,12 @@ def check_linear_conv_1d_col():
|
|||
assert_close(target_grad, linear_conv_col.weight.grad)
|
||||
|
||||
|
||||
def check_linear_conv_1d_row():
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_linear_conv_1d_row(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear_row = GPT2FusedLinearConv1D_Row.from_native_module(linear, process_group=None, parallel_input=False)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.shardformer.layer import VocabParallelEmbedding1D
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row, VocabParallelEmbedding1D
|
||||
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_vocab_embedding_1d():
|
||||
embedding = nn.Embedding(128, 32).to('cuda')
|
||||
@parameterize('lazy_init', [False, True])
|
||||
def check_vocab_embedding_1d(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
with ctx:
|
||||
embedding = nn.Embedding(128, 32).to('cuda')
|
||||
dist_embedding_1d = VocabParallelEmbedding1D.from_native_module(embedding, process_group=None)
|
||||
|
||||
assert dist_embedding_1d.weight.shape == torch.Size([64, 32])
|
||||
|
|
|
@ -1,19 +1,24 @@
|
|||
import copy
|
||||
from contextlib import nullcontext
|
||||
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
|
||||
|
||||
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True):
|
||||
# create new model
|
||||
org_model = model_fn().cuda()
|
||||
|
||||
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True, use_lazy_init: bool = False):
|
||||
ctx = LazyInitContext() if use_lazy_init else nullcontext()
|
||||
with ctx:
|
||||
# create new model
|
||||
org_model = model_fn()
|
||||
model_copy = copy.deepcopy(org_model)
|
||||
if use_lazy_init:
|
||||
ctx.materialize(org_model)
|
||||
# shard model
|
||||
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
|
||||
enable_tensor_parallelism=enable_tensor_parallelism)
|
||||
model_copy = copy.deepcopy(org_model)
|
||||
shard_former = ShardFormer(shard_config=shard_config)
|
||||
sharded_model, shared_params = shard_former.optimize(model_copy)
|
||||
return org_model, sharded_model.cuda()
|
||||
return org_model.cuda(), sharded_model.cuda()
|
||||
|
||||
|
||||
def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
|
|
|
@ -67,12 +67,14 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
|||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
@parameterize('enable_fused_normalization', [False, True])
|
||||
@parameterize('enable_tensor_parallelism', [False, True])
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
|
|
@ -69,10 +69,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
|||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
|
@ -69,10 +69,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
|||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_gpt2_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_gpt2_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
|
@ -72,10 +72,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
|||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism):
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
|
@ -71,10 +71,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
|||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
|
@ -82,10 +82,12 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
|||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism):
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_t5')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
from contextlib import nullcontext
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
@ -5,15 +7,15 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
|||
|
||||
import colossalai
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
def check_shardformer_with_ddp(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
@parameterize('lazy_init', [True, False])
|
||||
def check_shardformer_with_ddp(lazy_init: bool):
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
|
||||
|
||||
|
@ -41,9 +43,12 @@ def check_shardformer_with_ddp(rank, world_size, port):
|
|||
shard_config = ShardConfig(tensor_parallel_process_group=tp_process_group, enable_fused_normalization=True)
|
||||
shardformer = ShardFormer(shard_config=shard_config)
|
||||
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
# create and shard model
|
||||
model = model_fn().cuda()
|
||||
with ctx:
|
||||
model = model_fn().cuda()
|
||||
sharded_model, _ = shardformer.optimize(model)
|
||||
|
||||
# add ddp
|
||||
|
@ -65,13 +70,18 @@ def check_shardformer_with_ddp(rank, world_size, port):
|
|||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
check_shardformer_with_ddp()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_gpt2():
|
||||
spawn(check_shardformer_with_ddp, 4)
|
||||
spawn(run_dist, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_gpt2()
|
||||
test_gpt2()
|
||||
|
|
Loading…
Reference in New Issue