Browse Source

[shardformer] refactored layernorm (#4086)

pull/4157/head
Frank Lee 1 year ago
parent
commit
d33a44e8c3
  1. 4
      colossalai/shardformer/layer/__init__.py
  2. 101
      colossalai/shardformer/layer/layernorm.py
  3. 12
      colossalai/shardformer/policies/bert.py
  4. 11
      tests/test_shardformer/test_layer/test_layernorm.py

4
colossalai/shardformer/layer/__init__.py

@ -1,11 +1,11 @@
from .dropout import Dropout1D
from .embedding import Embedding1D, VocabParallelEmbedding1D
from .layernorm import LayerNorm1D
from .layernorm import FusedLayerNorm
from .linear import Linear1D_Col, Linear1D_Row
from .linear_conv import LinearConv1D_Col, LinearConv1D_Row
from .loss import cross_entropy_1d
__all__ = [
"Embedding1D", "VocabParallelEmbedding1D", "Linear1D_Col", "Linear1D_Row", "LinearConv1D_Col", "LinearConv1D_Row",
"Dropout1D", "cross_entropy_1d", 'LayerNorm1D'
"Dropout1D", "cross_entropy_1d", 'FusedLayerNorm'
]

101
colossalai/shardformer/layer/layernorm.py

@ -1,89 +1,64 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import List, Union
import torch
import torch.nn as nn
from torch.distributed import ProcessGroup
from colossalai.kernel import LayerNorm
from colossalai.nn import init as init
from .parallel_module import ParallelModule
__all__ = ['FusedLayerNorm']
__all__ = ['LayerNorm1D']
FAST_LAYERNORM_SUPPORTED_SIZE = [
1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480, 24576,
25600, 30720, 32768, 40960, 49152, 65536
]
Fast_LN = None
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
Fast_LN = FastLayerNorm
except ImportError:
pass
class LayerNorm1D(ParallelModule):
class FusedLayerNorm():
r"""
Layer Normalization for colossalai
Args:
normalized_shape (int): input shape from an expected input of size.
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1]
\times \ldots \times \text{normalized_shape}[-1]]`
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps (float): a value added to the denominator for numerical stability, defaults to 1e-05.
bias (bool, optional): Whether to add a bias, defaults to ``True``.
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
This is a wrapper around the apex fused layernorm implementation. It is meant to be used only with the from_native_module interface.
"""
_fast_ln_supported_sizes = [
1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480,
24576, 25600, 30720, 32768, 40960, 49152, 65536
]
def __init__(self,
normalized_shape: int,
eps: int = 1e-05,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None):
super().__init__()
if Fast_LN is not None and normalized_shape in self._fast_ln_supported_sizes:
norm = Fast_LN(normalized_shape, eps=eps).to(dtype)
else:
norm = None
try:
from apex.normalization import FusedLayerNorm
norm = FusedLayerNorm(normalized_shape, eps=eps).to(dtype)
except ImportError:
norm = LayerNorm(normalized_shape, eps=eps, device=device, dtype=dtype)
self.norm = norm
def __init__(self) -> None:
raise NotImplementedError(
'FusedLayerNorm is not implemented as a physical class. '
'It is meant to be used only with the from_native_module interface to wrap the fused layernorm implementation provided by apex.'
)
@staticmethod
def from_native_module(module: nn.LayerNorm, process_group: Union[ProcessGroup, List[ProcessGroup]], *args,
**kwargs) -> ParallelModule:
def from_native_module(module: nn.LayerNorm, *args, **kwargs) -> nn.Module:
r"""
Convert a native pytorch layer norm module to colossalai layer norm module
"""
# check if apex is installed
try:
import apex
except ImportError:
raise ImportError(
'Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel')
# get the attributes of the module
normalized_shape = module.normalized_shape
eps = module.eps
bias = module.bias is not None
elementwise_affine = module.elementwise_affine
dtype = module.weight.dtype
device = module.weight.device
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, \
f'Expected only one process group, got {len(process_group)}.'
process_group = process_group[0]
# pick the suitable layernorm implementation
use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE
if use_fast_ln:
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm as ApexFusedLayerNorm
except ImportError:
# fall back to the normal fused layernorm is not built
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
else:
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
# create layer norm
layer_norm = LayerNorm1D(normalized_shape, eps=eps, bias=bias, device=device, dtype=dtype).norm
layernorm = ApexFusedLayerNorm(normalized_shape, eps=eps,
elementwise_affine=elementwise_affine).to(dtype).to(device)
with torch.no_grad():
# copy weight and bias
layer_norm.weight.copy_(module.weight)
if bias:
layer_norm.bias.copy_(module.bias)
return layer_norm
layernorm.weight.copy_(module.weight)
layernorm.bias.copy_(module.bias)
return layernorm

12
colossalai/shardformer/policies/bert.py

@ -103,17 +103,17 @@ class BertPolicy(Policy):
base_policy[BertLayer].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="attention.output.LayerNorm",
target_module=col_nn.LayerNorm1D,
target_module=col_nn.FusedLayerNorm,
))
base_policy[BertLayer].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="output.LayerNorm",
target_module=col_nn.LayerNorm1D,
target_module=col_nn.FusedLayerNorm,
))
base_policy[BertEmbeddings].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="LayerNorm",
target_module=col_nn.LayerNorm1D,
target_module=col_nn.FusedLayerNorm,
),)
return base_policy
@ -154,7 +154,7 @@ class BertForPretrainingPolicy(BertPolicy):
addon_module[BertLMPredictionHead].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.LayerNorm1D,
target_module=col_nn.FusedLayerNorm,
))
module_policy.update(addon_module)
return module_policy
@ -191,7 +191,7 @@ class BertLMHeadModelPolicy(BertPolicy):
addon_module[BertLMPredictionHead].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.LayerNorm1D,
target_module=col_nn.FusedLayerNorm,
))
module_policy.update(addon_module)
return module_policy
@ -228,7 +228,7 @@ class BertForMaskedLMPolicy(BertPolicy):
addon_module[BertLMPredictionHead].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.LayerNorm1D,
target_module=col_nn.FusedLayerNorm,
))
module_policy.update(addon_module)
return module_policy

11
tests/test_shardformer/test_layer/test_layernorm.py

@ -1,16 +1,15 @@
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.shardformer.layer import LayerNorm1D
from colossalai.shardformer.layer import FusedLayerNorm
from colossalai.testing import rerun_if_address_is_in_use, spawn
def check_layernorm_1d():
def check_layernorm():
norm = nn.LayerNorm(128, 0.00001).cuda()
norm1d = LayerNorm1D.from_native_module(norm, process_group=None)
norm1d = FusedLayerNorm.from_native_module(norm, process_group=None)
assert norm1d.weight.shape == torch.Size([128])
@ -33,11 +32,11 @@ def check_layernorm_1d():
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_layernorm_1d()
check_layernorm()
@rerun_if_address_is_in_use()
def test_layernorm_1d():
def test_layernorm():
spawn(run_dist, nprocs=2)

Loading…
Cancel
Save