#!/usr/bin/env python # -*- encoding: utf-8 -*- import warnings from abc import ABC, abstractmethod import torch.nn as nn from colossalai.lazy import LazyInitContext from ._operation import hook_paramter_in_backward from .utils import SeqParallelUtils __all__ = ["FusedLayerNorm", "FusedRMSNorm", "LayerNorm", "RMSNorm", "BaseLayerNorm"] try: from apex.contrib.layer_norm.layer_norm import FastLayerNorm EnableFastLayerNorm = True except ImportError: EnableFastLayerNorm = False try: from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm from apex.normalization import FusedRMSNorm as ApexFusedRMSNorm except ImportError: warnings.warn( "Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel" ) FAST_LAYERNORM_SUPPORTED_SIZE = [ 1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480, 24576, 25600, 30720, 32768, 40960, 49152, 65536, ] if EnableFastLayerNorm: class FastLayerNormWithHook(FastLayerNorm): def __init__(self, hidden_size, eps=0.00001): super().__init__(hidden_size, eps) def forward(self, input): output = super().forward(input) output = hook_paramter_in_backward(output, self.weight, self.bias) return output class FusedLayerNormWithHook(ApexFusedLayerNorm): def __init__(self, normalized_shape, eps=0.00001, elementwise_affine=True): super().__init__(normalized_shape, eps, elementwise_affine) def forward(self, input): output = super().forward(input) output = hook_paramter_in_backward(output, self.weight, self.bias) return output class FusedRMSNormWithHook(ApexFusedRMSNorm): def __init__(self, normalized_shape, eps=0.00001, elementwise_affine=True): super().__init__(normalized_shape, eps, elementwise_affine) def forward(self, input): output = super().forward(input) output = hook_paramter_in_backward(output, self.weight) return output class BaseLayerNorm(ABC): @abstractmethod def from_native_module(module: nn.Module, sp_partial_derived: bool = False): """ Convert a native PyTorch layer normalization module to a specific layer normalization module, and optionally mark parameters for gradient aggregation. Args: module (nn.Module): The native PyTorch layer normalization module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: The specific layer normalization module. Raises: AssertionError: If the provided module is not an instance of the supported layer normalization type. """ class RMSNorm(BaseLayerNorm): r""" This is a wrapper around the RMSNorm. It is meant to be used only with the from_native_module interface. """ def __init__(self) -> None: raise NotImplementedError( "FusedLayerNorm is not implemented as a physical class. " "It is meant to be used only with the from_native_module interface to convert a native RMSNorm module to colossalai layer norm module." ) @staticmethod def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module: """ Convert a native RMSNorm module to colossalai layer norm module, and optionally mark parameters for gradient aggregation. Args: module (nn.Module): The native RMSNorm module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: The RMSNorm module. """ LazyInitContext.materialize(module) if sp_partial_derived: # Since gradients are computed using only a subset of the data, # aggregation of these gradients is necessary during backpropagation. # Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation. SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight) return module class LayerNorm(BaseLayerNorm): r""" This is a wrapper around the torch.nn.LayerNorm. It is meant to be used only with the from_native_module interface. """ def __init__(self) -> None: raise NotImplementedError( "LayerNorm is not implemented as a physical class. " "It is meant to be used only with the from_native_module interface to convert a native pytorch layer norm module to colossalai layer norm module." ) @staticmethod def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module: r""" Convert a native pytorch layer norm module to colossalai layer norm module, and optionally marking parameters for gradient aggregation. Args: module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: The LayerNorm module. Raises: AssertionError: If the provided module is not an instance of nn.LayerNorm. """ assert isinstance(module, nn.LayerNorm), "Only support conversion from nn.LayerNorm." LazyInitContext.materialize(module) if sp_partial_derived: # Since gradients are computed using only a subset of the data, # aggregation of these gradients is necessary during backpropagation. # Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation. SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight) SeqParallelUtils.marked_as_sp_partial_derived_param(module.bias) return module class FusedLayerNorm(BaseLayerNorm): r""" This is a wrapper around the apex fused layernorm implementation. It is meant to be used only with the from_native_module interface. """ def __init__(self) -> None: raise NotImplementedError( "FusedLayerNorm is not implemented as a physical class. " "It is meant to be used only with the from_native_module interface convert a native pytorch layer norm module to FusedLayerNorm module provided by apex." ) @staticmethod def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module: r""" Convert a native pytorch layer norm module to FusedLayerNorm module provided by apex, and optionally marking parameters for gradient aggregation. Args: module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: Union[FastLayerNorm, FusedLayerNorm]. Raises: AssertionError: If the provided module is not an instance of nn.LayerNorm. """ LazyInitContext.materialize(module) # get the attributes of the module normalized_shape = module.normalized_shape eps = module.eps elementwise_affine = module.elementwise_affine dtype = module.weight.dtype device = module.weight.device # pick the suitable layernorm implementation use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE if use_fast_ln: if EnableFastLayerNorm: ApexFusedLayerNorm = FastLayerNormWithHook else: # fall back to the normal fused layernorm is not built ApexFusedLayerNorm = FusedLayerNormWithHook else: ApexFusedLayerNorm = FusedLayerNormWithHook layernorm = ( ApexFusedLayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine).to(dtype).to(device) ) layernorm.weight = module.weight layernorm.bias = module.bias if sp_partial_derived: # Since gradients are computed using only a subset of the data, # aggregation of these gradients is necessary during backpropagation. # Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation. SeqParallelUtils.marked_as_sp_partial_derived_param(layernorm.weight) SeqParallelUtils.marked_as_sp_partial_derived_param(layernorm.bias) return layernorm class FusedRMSNorm(BaseLayerNorm): """ This is a wrapper around the apex fused rms norm implementation. It is meant to be used only with the from_native_module interface. """ def __init__(self) -> None: raise NotImplementedError( "FusedRMSNorm is not implemented as a physical class. " "It is meant to be used only with the from_native_module interface to Convert a native RMSNorm module to FusedRMSNorm module provided by apex." ) @staticmethod def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module: r""" Convert a native RMSNorm module module to FusedRMSNorm module provided by apex, and optionally marking parameters for gradient aggregation. Args: module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: FusedRMSNorm module. """ try: from apex.normalization import FusedRMSNorm as ApexFusedRMSNorm except ImportError: raise ImportError( "Please install apex from source (https://github.com/NVIDIA/apex) to use the fused RMS normalization kernel" ) LazyInitContext.materialize(module) # to check if it is huggingface LlamaRMSNorm if module.__class__.__name__ == "LlamaRMSNorm": normalized_shape = module.weight.shape[0] eps = module.variance_epsilon elementwise_affine = True else: # get the attributes of the module normalized_shape = module.normalized_shape eps = module.eps elementwise_affine = module.elementwise_affine rmsnorm = FusedRMSNormWithHook(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine) rmsnorm.weight = module.weight if sp_partial_derived: # Since gradients are computed using only a subset of the data, # aggregation of these gradients is necessary during backpropagation. # Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation. SeqParallelUtils.marked_as_sp_partial_derived_param(rmsnorm.weight) return rmsnorm