ColossalAI/tests/test_zero/test_sharded_optim_v2.py

116 lines
4.6 KiB
Python
Raw Normal View History

2022-03-04 03:49:02 +00:00
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from common import CONFIG, check_sharded_model_params
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.nn.optimizer import CPUAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use
2022-03-04 03:49:02 +00:00
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
2022-03-04 03:49:02 +00:00
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model.utils import col_model_deepcopy
2022-03-04 03:49:02 +00:00
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
2022-03-09 08:09:36 +00:00
from tests.components_to_test.registry import non_distributed_component_funcs
2022-03-04 03:49:02 +00:00
2022-03-16 04:22:45 +00:00
def _run_step(model, optimizer, data, label, criterion, enable_autocast=False):
2022-03-04 03:49:02 +00:00
model.train()
2022-03-04 05:40:48 +00:00
optimizer.zero_grad()
2022-03-04 03:49:02 +00:00
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
2022-03-04 03:49:02 +00:00
loss = loss.float()
2022-03-09 08:09:36 +00:00
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
else:
loss.backward()
optimizer.step()
2022-03-04 03:49:02 +00:00
@parameterize("cpu_offload", [True, False])
@parameterize("use_cpuadam", [True, False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
@parameterize("gpu_margin_mem_ratio", [0.0, 0.7])
def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, gpu_margin_mem_ratio):
test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'hanging_param_model']
shard_strategy = shard_strategy_class()
2022-03-16 04:22:45 +00:00
if use_cpuadam and cpu_offload is False:
return
if gpu_margin_mem_ratio > 0.0 and not (cpu_offload and use_cpuadam):
return
2022-03-16 04:22:45 +00:00
2022-03-09 08:09:36 +00:00
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
with ZeroInitContext(target_device=torch.device(f'cpu:0') if cpu_offload else get_current_device(),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = model_builder(checkpoint=True)
2022-03-29 07:45:48 +00:00
zero_model = ShardedModelV2(
zero_model,
shard_strategy,
tensor_placement_policy='cpu' if cpu_offload else 'cuda',
2022-03-29 07:45:48 +00:00
reuse_fp16_shard=use_cpuadam,
)
model = model_builder(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda().float()
2022-03-16 04:22:45 +00:00
if use_cpuadam:
optimizer_class = CPUAdam
optim = optimizer_class(model.parameters(), lr=1e-3)
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model,
sharded_optim,
initial_scale=2**5,
gpu_margin_mem_ratio=gpu_margin_mem_ratio)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
if dist.get_world_size() > 1:
apex_model = DDP(apex_model, device_ids=[torch.cuda.current_device()])
2022-03-09 08:09:36 +00:00
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
2022-03-09 08:09:36 +00:00
break
data, label = data.cuda(), label.cuda()
_run_step(apex_model, apex_optimizer, data, label, criterion, False)
2022-03-16 04:22:45 +00:00
_run_step(zero_model, sharded_optim, data, label, criterion, False)
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
for param in model.parameters():
assert not has_inf_or_nan(param)
2022-03-04 03:49:02 +00:00
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
_run_test_sharded_optim_v2()
2022-03-16 04:22:45 +00:00
# use_cpuadam = True can be used with cpu_offload = False
2022-03-09 08:09:36 +00:00
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_if_address_is_in_use()
def test_sharded_optim_v2(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
2022-03-04 03:49:02 +00:00
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_sharded_optim_v2(world_size=2)