mirror of https://github.com/hpcaitech/ColossalAI
[test] fixed amp convergence comparison test (#454)
parent
a241f61b34
commit
af185b5519
|
@ -3,7 +3,7 @@ import colossalai
|
|||
import copy
|
||||
import pytest
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.amp import convert_to_naive_amp
|
||||
from colossalai.amp import convert_to_naive_amp, convert_to_apex_amp
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from colossalai.testing import assert_close_loose
|
||||
from colossalai.utils import free_port
|
||||
|
@ -23,23 +23,29 @@ def run_naive_amp():
|
|||
and fp32 torch optimizer
|
||||
"""
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
# create layer
|
||||
test_models = ['repeated_computed_layers', 'nested_model']
|
||||
test_models = ['repeated_computed_layers', 'nested_model', 'resnet18']
|
||||
for test_name in test_models:
|
||||
get_component_func = non_distributed_component_funcs.get_callable(test_name)
|
||||
model_builder, train_dataloader, _, optim_class, _ = get_component_func()
|
||||
|
||||
# create model
|
||||
amp_model = model_builder(checkpoint=True).cuda()
|
||||
torch_model = copy.deepcopy(amp_model)
|
||||
naive_amp_model = model_builder(checkpoint=True).cuda()
|
||||
apex_amp_model = copy.deepcopy(naive_amp_model)
|
||||
|
||||
# create optimizer
|
||||
amp_optimizer = optim_class(amp_model.parameters(), lr=1e-3)
|
||||
torch_optimizer = optim_class(torch_model.parameters(), lr=1e-3)
|
||||
naive_amp_optimizer = optim_class(naive_amp_model.parameters(), lr=1e-3)
|
||||
apex_amp_optimizer = optim_class(apex_amp_model.parameters(), lr=1e-3)
|
||||
|
||||
# inject naive amp
|
||||
amp_config = dict(initial_scale=1)
|
||||
amp_model, amp_optimizer = convert_to_naive_amp(amp_model, amp_optimizer, amp_config)
|
||||
# inject naive and apex amp
|
||||
naive_amp_config = dict(initial_scale=128)
|
||||
naive_amp_model, naive_amp_optimizer = convert_to_naive_amp(naive_amp_model, naive_amp_optimizer,
|
||||
naive_amp_config)
|
||||
apex_amp_config = dict(opt_level='O2', loss_scale=128, keep_batchnorm_fp32=False)
|
||||
apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config)
|
||||
|
||||
# create data
|
||||
data_iter = iter(train_dataloader)
|
||||
|
@ -47,25 +53,25 @@ def run_naive_amp():
|
|||
data = data.cuda()
|
||||
|
||||
# forward pass
|
||||
amp_output = amp_model(data)
|
||||
torch_output = torch_model(data)
|
||||
assert_close_loose(amp_output, torch_output)
|
||||
naive_amp_output = naive_amp_model(data)
|
||||
apex_amp_output = apex_amp_model(data)
|
||||
assert_close_loose(naive_amp_output, apex_amp_output)
|
||||
|
||||
# backward
|
||||
amp_optimizer.backward(amp_output.mean())
|
||||
torch_output.mean().backward()
|
||||
naive_amp_optimizer.backward(naive_amp_output.mean())
|
||||
apex_amp_optimizer.backward(apex_amp_output.mean())
|
||||
|
||||
# check grad
|
||||
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()):
|
||||
assert_close_loose(amp_param.grad, torch_param.grad.half())
|
||||
for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()):
|
||||
assert_close_loose(naive_amp_param.grad, apex_amp_param.grad)
|
||||
|
||||
# step
|
||||
amp_optimizer.step()
|
||||
torch_optimizer.step()
|
||||
naive_amp_optimizer.step()
|
||||
apex_amp_optimizer.step()
|
||||
|
||||
# check updated param
|
||||
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()):
|
||||
assert_close_loose(amp_param, torch_param.half())
|
||||
for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()):
|
||||
assert_close_loose(naive_amp_param, apex_amp_param)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
|
|
@ -46,7 +46,7 @@ def run_model_test(enable_autocast, shard_strategy_class):
|
|||
model = DDP(model)
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 3:
|
||||
if i > 5:
|
||||
break
|
||||
|
||||
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
|
||||
|
|
|
@ -18,6 +18,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
|||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from common import CONFIG, check_sharded_params_padding
|
||||
from colossalai.amp import convert_to_apex_amp
|
||||
|
||||
|
||||
def _run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
||||
|
@ -65,8 +66,6 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam):
|
|||
model = model_builder(checkpoint=True).half()
|
||||
col_model_deepcopy(zero_model, model)
|
||||
model = model.cuda().float()
|
||||
if dist.get_world_size() > 1:
|
||||
model = DDP(model)
|
||||
|
||||
if use_cpuadam:
|
||||
optimizer_class = CPUAdam
|
||||
|
@ -74,12 +73,16 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam):
|
|||
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
|
||||
sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, cpu_offload=cpu_offload, initial_scale=2**5)
|
||||
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
|
||||
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
|
||||
if dist.get_world_size() > 1:
|
||||
apex_model = DDP(apex_model)
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
# FIXME() if i > 5, the unittest will fail
|
||||
if i > 3:
|
||||
if i > 5:
|
||||
break
|
||||
data, label = data.cuda(), label.cuda()
|
||||
_run_step(model, optim, data, label, criterion, False)
|
||||
_run_step(apex_model, apex_optimizer, data, label, criterion, False)
|
||||
_run_step(zero_model, sharded_optim, data, label, criterion, False)
|
||||
check_sharded_params_padding(model, zero_model, loose=True)
|
||||
for param in model.parameters():
|
||||
|
|
Loading…
Reference in New Issue