mirror of https://github.com/hpcaitech/ColossalAI
[zero] update sharded optim v2 (#334)
parent
2b8cddd40e
commit
d0ae0f2215
|
@ -102,6 +102,11 @@ class ShardedModelV2(nn.Module):
|
|||
# Wait for the non-blocking GPU -> CPU grad transfers to finish.
|
||||
torch.cuda.current_stream().synchronize()
|
||||
self.reducer.free()
|
||||
# In case some post bwd hook is not fired
|
||||
if self.shard_param:
|
||||
for p in self.module.parameters():
|
||||
if not p.col_attr.param_is_sharded:
|
||||
self.shard_strategy.shard([p.col_attr.data])
|
||||
for p in self.module.parameters():
|
||||
p.col_attr.bwd_count = 0
|
||||
if not p.requires_grad:
|
||||
|
@ -113,13 +118,12 @@ class ShardedModelV2(nn.Module):
|
|||
if not self._require_backward_grad_sync:
|
||||
continue
|
||||
# Write grad back to p.grad and set p.col_attr.grad to None
|
||||
p.grad.data = p.col_attr.grad
|
||||
# We have to make sure grad and param have the same shape
|
||||
# If world size > 1, and sharded param, `.view()` may be not needed
|
||||
# If world size == 1, and sharded param, `data` is a flatten tensor
|
||||
# But the shape `grad` is the same as unsharded param
|
||||
p.grad.data = p.col_attr.grad.view(p.col_attr.data.shape)
|
||||
p.col_attr.grad = None
|
||||
# In case some post bwd hook is not fired
|
||||
if self.shard_param:
|
||||
for p in self.module.parameters():
|
||||
if not p.col_attr.param_is_sharded:
|
||||
self.shard_strategy.shard([p.col_attr.data])
|
||||
|
||||
@torch.no_grad()
|
||||
def _grad_post_backward_hook(self, param: Parameter, grad: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
|
@ -180,7 +184,11 @@ class ShardedModelV2(nn.Module):
|
|||
if param.col_attr.grad is None:
|
||||
param.col_attr.grad = reduced_grad.data
|
||||
else:
|
||||
param.col_attr.grad.add_(reduced_grad.data)
|
||||
# When dp size = 1
|
||||
# param.col_attr.grad is local accumulated grad shard (full but flatten)
|
||||
# But reduced_grad here is full grad
|
||||
# We should call `view_as`
|
||||
param.col_attr.grad.add_(reduced_grad.data.view_as(param.col_attr.grad))
|
||||
|
||||
def state_dict(self, destination=None, prefix='', keep_vars=False) -> 'OrderedDict[str, torch.Tensor]':
|
||||
self.shard_strategy.gather([p.col_attr.data for p in self.module.parameters()])
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from enum import Enum
|
||||
from typing import Dict, Optional, Union
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
@ -8,7 +8,9 @@ from colossalai.amp.naive_amp._fp16_optimizer import DynamicGradScaler
|
|||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||||
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp32
|
||||
from torch import Tensor
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.nn.parameter import Parameter
|
||||
|
@ -26,7 +28,8 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
|
||||
def __init__(self,
|
||||
optimizer: Optimizer,
|
||||
sharded_model: Union[nn.Module, ShardedModelV2],
|
||||
sharded_model: ShardedModelV2,
|
||||
shard_strategy: BaseShardStrategy,
|
||||
cpu_offload: bool = False,
|
||||
initial_scale: float = 2**32,
|
||||
min_scale: float = 1,
|
||||
|
@ -37,9 +40,10 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
max_scale: int = 2**32,
|
||||
dp_process_group: Optional[ProcessGroup] = None,
|
||||
mp_process_group: Optional[ProcessGroup] = None) -> None:
|
||||
assert isinstance(sharded_model, ShardedModelV2), 'model must be wrapped with ShardedModel'
|
||||
super().__init__(optimizer)
|
||||
self.model: Union[nn.Module, ShardedModelV2] = sharded_model
|
||||
self.model_is_sharded = isinstance(sharded_model, ShardedModelV2)
|
||||
self.shard_strategy = shard_strategy
|
||||
self.model: ShardedModelV2 = sharded_model
|
||||
self.device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu')
|
||||
self.optim_state: OptimState = OptimState.UNSCALED
|
||||
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
|
||||
|
@ -52,20 +56,25 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
growth_interval=growth_interval,
|
||||
hysteresis=hysteresis,
|
||||
max_scale=max_scale)
|
||||
self._found_overflow: Tensor = torch.FloatTensor([0]).to(self.device)
|
||||
self._found_overflow: Tensor = torch.FloatTensor([0]).to(torch.cuda.current_device())
|
||||
|
||||
# Store fp32 params
|
||||
# Store fp32 param shards
|
||||
self.master_params: Dict[Parameter, Tensor] = {}
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
for p in group['params']:
|
||||
if hasattr(p, 'ca_attr'):
|
||||
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
||||
self.master_params[p] = p.ca_attr.payload(self.device)
|
||||
else:
|
||||
self.master_params[p] = p.data.to(device=self.device)
|
||||
if torch.is_floating_point(self.master_params[p]) and self.master_params[p].dtype != torch.float:
|
||||
self.master_params[p] = self.master_params[p].to(torch.float)
|
||||
assert hasattr(p, 'col_attr'), 'The parameter must be wrapped with ShardedParam'
|
||||
is_param_sharded = p.col_attr.data.is_sharded
|
||||
if not is_param_sharded:
|
||||
# TODO (ver217): we may not use shard / gather here
|
||||
# Param is no sharded, which means we use ZeRO-2 here
|
||||
# As we only store param shard, we shard it here
|
||||
self.shard_strategy.shard([p.col_attr.data])
|
||||
self.master_params[p] = cast_tensor_to_fp32(p.col_attr.data.payload).to(self.device)
|
||||
if not is_param_sharded:
|
||||
# In this branch, there's no need to shard param
|
||||
# So we gather here
|
||||
self.shard_strategy.gather([p.col_attr.data])
|
||||
|
||||
def step(self, *args, **kwargs):
|
||||
# unscale grads if scaled
|
||||
|
@ -83,28 +92,36 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
p.data = self.master_params[p]
|
||||
# Now p.data is sharded
|
||||
# So optimizer states are sharded naturally
|
||||
ret = self.optim.step(*args, **kwargs)
|
||||
# Write master param to payload
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
if hasattr(p, 'ca_attr'):
|
||||
p.ca_attr.set_payload(p.data)
|
||||
p.data = p.ca_attr.payload()
|
||||
is_param_sharded = p.col_attr.data.is_sharded
|
||||
if not is_param_sharded:
|
||||
# We use ZeRO-2 here
|
||||
# The `p.col_attr.data` saves full fp16 param
|
||||
# But we only have updated fp32 param shard here
|
||||
# So we first shard full fp16 param and copy fp32 param shard to it
|
||||
# Then we will gather them
|
||||
self.shard_strategy.shard([p.col_attr.data])
|
||||
# We have to use `copy_payload` instead of `reset_payload`
|
||||
# Since p.data is fp32 and p.col_attr.data is fp16
|
||||
p.col_attr.data.copy_payload(p.data)
|
||||
if not is_param_sharded:
|
||||
# We gather full fp16 param here
|
||||
self.shard_strategy.gather([p.col_attr.data])
|
||||
p.data = p.col_attr.data.payload
|
||||
return ret
|
||||
|
||||
def backward(self, loss: Tensor) -> None:
|
||||
loss = self.loss_scale * loss
|
||||
self.optim_state = OptimState.SCALED
|
||||
if self.model_is_sharded:
|
||||
self.model.backward(loss)
|
||||
else:
|
||||
super().backward(loss)
|
||||
self.model.backward(loss)
|
||||
|
||||
def backward_by_grad(self, tensor: Tensor, grad: Tensor) -> None:
|
||||
if self.model_is_sharded:
|
||||
self.model.backward_by_grad(tensor, grad)
|
||||
else:
|
||||
super().backward_by_grad(tensor, grad)
|
||||
self.model.backward_by_grad(tensor, grad)
|
||||
|
||||
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
||||
if self.optim_state == OptimState.SCALED:
|
||||
|
@ -113,7 +130,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
|
||||
@property
|
||||
def loss_scale(self):
|
||||
return self.grad_scaler.scale
|
||||
return self.grad_scaler.scale.item()
|
||||
|
||||
def _check_overflow(self):
|
||||
# clear previous overflow record
|
||||
|
@ -141,3 +158,9 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
if p.grad is not None:
|
||||
p.grad.data.div_(self.loss_scale)
|
||||
self.optim_state = OptimState.UNSCALED
|
||||
|
||||
def zero_grad(self, *args, **kwargs):
|
||||
# We must set grad to None
|
||||
# Because we will judge whether local grad accumulation
|
||||
# is enabled by wheter grad is None
|
||||
self.optim.zero_grad(set_to_none=True)
|
||||
|
|
|
@ -95,12 +95,12 @@ def check_params_padding(model, zero_model, loose=False):
|
|||
def check_sharded_params_padding(model, zero_model, loose=False):
|
||||
rank = dist.get_rank()
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_p = zero_p.ca_attr.payload(p.device)
|
||||
zero_p = zero_p.col_attr.data.payload.to(p.device).float()
|
||||
chunks = torch.flatten(p).chunk(dist.get_world_size())
|
||||
if rank >= len(chunks):
|
||||
continue
|
||||
p = chunks[rank]
|
||||
p = chunks[rank].float()
|
||||
if zero_p.size(0) > p.size(0):
|
||||
zero_p = zero_p[:p.size(0)]
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
assert allclose(p, zero_p, loose=loose), f'{p} vs {zero_p}'
|
||||
|
|
|
@ -17,7 +17,7 @@ from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp16
|
|||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from common import CONFIG, check_grads, check_grads_padding
|
||||
from common import CONFIG, check_grads_padding
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
|
||||
|
@ -69,10 +69,7 @@ def run_dist(rank, world_size, port):
|
|||
run_fwd_bwd(model, data, label, criterion, False)
|
||||
run_fwd_bwd(zero_model, data, label, criterion, False)
|
||||
|
||||
if dist.get_world_size() > 1:
|
||||
check_grads_padding(model, zero_model, loose=True)
|
||||
else:
|
||||
check_grads(model, zero_model, loose=True)
|
||||
check_grads_padding(model, zero_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
|
|
@ -9,22 +9,23 @@ import pytest
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.zero.shard_utils import TensorShardStrategy
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Adam
|
||||
|
||||
from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_sharded_params_padding)
|
||||
from common import CONFIG, check_sharded_params_padding
|
||||
|
||||
|
||||
def run_step(model, optimizer, x, enable_autocast=False):
|
||||
def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
y = model(x)
|
||||
loss = y.sum()
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
loss = loss.float()
|
||||
if isinstance(model, ShardedModelV2):
|
||||
optimizer.backward(loss)
|
||||
|
@ -33,35 +34,53 @@ def run_step(model, optimizer, x, enable_autocast=False):
|
|||
optimizer.step()
|
||||
|
||||
|
||||
def run_step_no_criterion(model, optimizer, data, label, enable_autocast=False):
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
loss = model(data, label)
|
||||
if isinstance(model, ShardedModelV2):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
model = Net(checkpoint=True).cuda()
|
||||
zero_model = copy.deepcopy(model)
|
||||
zero_model = ShardedModelV2(zero_model, process_group=gpc.get_group(ParallelMode.DATA))
|
||||
for n, p in zero_model.named_parameters():
|
||||
p._name = n
|
||||
optim = Adam(model.parameters(), lr=1e-3)
|
||||
sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3), zero_model)
|
||||
|
||||
for _ in range(2):
|
||||
x = torch.rand(2, 5).cuda()
|
||||
run_step(zero_model, sharded_optim, x, False)
|
||||
run_step(model, optim, x, False)
|
||||
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
shard_strategy = TensorShardStrategy()
|
||||
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
||||
model = model(checkpoint=True).cuda()
|
||||
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
||||
if dist.get_world_size() > 1:
|
||||
check_grads_padding(model, zero_model)
|
||||
check_sharded_params_padding(model, zero_model)
|
||||
else:
|
||||
check_grads(model, zero_model)
|
||||
check_params(model, zero_model)
|
||||
model = DDP(model)
|
||||
optim = Adam(model.parameters(), lr=1e-3)
|
||||
sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3),
|
||||
zero_model,
|
||||
shard_strategy,
|
||||
initial_scale=2**5)
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
data, label = data.cuda(), label.cuda()
|
||||
if criterion is None:
|
||||
run_step_no_criterion(model, optim, data, label, False)
|
||||
run_step_no_criterion(zero_model, sharded_optim, data, label, False)
|
||||
else:
|
||||
run_step(model, optim, data, label, criterion, False)
|
||||
run_step(zero_model, sharded_optim, data, label, criterion, False)
|
||||
check_sharded_params_padding(model, zero_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
def test_sharded_optim_v2():
|
||||
world_size = 2
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2, 4])
|
||||
def test_sharded_optim_v2(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sharded_optim_v2()
|
||||
test_sharded_optim_v2(world_size=2)
|
||||
|
|
Loading…
Reference in New Issue