mirror of https://github.com/hpcaitech/ColossalAI
[zero] polish ShardedOptimV2 unittest (#385)
* place params on cpu after zero init context * polish code * bucketzed cpu gpu tensor transter * find a bug in sharded optim unittest * add offload unittest for ShardedOptimV2. * polish code and make it more robustpull/394/head
parent
ce7b2c9ae3
commit
3af13a2c3e
|
@ -79,6 +79,10 @@ class ShardedModelV2(nn.Module):
|
|||
self.reducer = ReduceScatterBucketer(reduce_scatter_bucket_size_mb)
|
||||
self._require_backward_grad_sync: bool = True
|
||||
|
||||
@property
|
||||
def cpu_offload(self):
|
||||
return self._cpu_offload
|
||||
|
||||
def forward(self, *args: Any, **kwargs: Any) -> torch.Tensor:
|
||||
args, kwargs = cast_float_arguments(cast_tensor_to_fp16, *args, **kwargs)
|
||||
outputs = self.module(*args, **kwargs)
|
||||
|
|
|
@ -44,6 +44,10 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
super().__init__(optimizer)
|
||||
self.shard_strategy = shard_strategy
|
||||
self.model: ShardedModelV2 = sharded_model
|
||||
if cpu_offload and not sharded_model.cpu_offload:
|
||||
raise RuntimeError(
|
||||
f"ShardedOptimizerV2 using cpu_offload, but the sharded_model used to initialize it dose not use cpu_offload"
|
||||
)
|
||||
self.device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu')
|
||||
self.optim_state: OptimState = OptimState.UNSCALED
|
||||
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
|
||||
|
|
|
@ -24,8 +24,12 @@ def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
|||
model.train()
|
||||
optimizer.zero_grad()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
|
||||
loss = loss.float()
|
||||
if isinstance(model, ShardedModelV2):
|
||||
optimizer.backward(loss)
|
||||
|
@ -34,19 +38,7 @@ def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
|||
optimizer.step()
|
||||
|
||||
|
||||
def run_step_no_criterion(model, optimizer, data, label, enable_autocast=False):
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
loss = model(data, label)
|
||||
if isinstance(model, ShardedModelV2):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, cpu_offload):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
||||
for model_name in test_models:
|
||||
|
@ -54,33 +46,33 @@ def run_dist(rank, world_size, port):
|
|||
shard_strategy = TensorShardStrategy()
|
||||
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
||||
model = model(checkpoint=True).cuda()
|
||||
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
||||
zero_model = ShardedModelV2(copy.deepcopy(model),
|
||||
shard_strategy,
|
||||
offload_config=dict(device='cpu') if cpu_offload else None)
|
||||
if dist.get_world_size() > 1:
|
||||
model = DDP(model)
|
||||
optim = Adam(model.parameters(), lr=1e-3)
|
||||
sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3),
|
||||
zero_model,
|
||||
shard_strategy,
|
||||
cpu_offload=cpu_offload,
|
||||
initial_scale=2**5)
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
data, label = data.cuda(), label.cuda()
|
||||
if criterion is None:
|
||||
run_step_no_criterion(model, optim, data, label, False)
|
||||
run_step_no_criterion(zero_model, sharded_optim, data, label, False)
|
||||
else:
|
||||
run_step(model, optim, data, label, criterion, False)
|
||||
run_step(zero_model, sharded_optim, data, label, criterion, False)
|
||||
run_step(model, optim, data, label, criterion, False)
|
||||
run_step(zero_model, sharded_optim, data, label, criterion, False)
|
||||
check_sharded_params_padding(model, zero_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2, 4])
|
||||
def test_sharded_optim_v2(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
@pytest.mark.parametrize("cpu_offload", [True, False])
|
||||
def test_sharded_optim_v2(world_size, cpu_offload):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), cpu_offload=cpu_offload)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sharded_optim_v2(world_size=2)
|
||||
test_sharded_optim_v2(world_size=2, cpu_offload=True)
|
||||
|
|
Loading…
Reference in New Issue