[test] align model name with the file name. (#2045)

pull/2047/head
Jiarui Fang 2022-11-30 15:45:26 +08:00 committed by GitHub
parent 31c644027b
commit 1e885329f4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 225 additions and 219 deletions

View File

@ -1,2 +1,11 @@
from . import bert, gpt, inline_op_model, nested_model, no_leaf_module, repeated_computed_layer, resnet, simple_net
from . import (
bert,
gpt2,
hanging_param_model,
inline_op_model,
nested_model,
repeated_computed_layer,
resnet,
simple_net,
)
from .utils import run_fwd_bwd

View File

@ -8,9 +8,10 @@ from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class NoLeafModule(CheckpointModule):
class HangingParamModule(CheckpointModule):
"""
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter.
Hanging Parameter: a parameter dose not belong to a leaf Module.
It has subordinate nn.modules and a nn.Parameter.
"""
def __init__(self, checkpoint=False) -> None:
@ -34,11 +35,11 @@ class DummyDataLoader(DummyDataGenerator):
return data, label
@non_distributed_component_funcs.register(name='no_leaf_module')
@non_distributed_component_funcs.register(name='hanging_param_model')
def get_training_components():
def model_builder(checkpoint=False):
return NoLeafModule(checkpoint)
return HangingParamModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()

View File

@ -14,7 +14,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
def run_tracer(rank, world_size, port, use_grad_check=True):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18', 'no_leaf_module', 'bert']
test_models = ['repeated_computed_layers', 'resnet18', 'hanging_param_model', 'bert']
# test_models = ['bert']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)

View File

@ -50,7 +50,7 @@ def run_model(model, inputs, label, criterion, use_param_hook=False):
def test_base_param_hook():
test_models = ['repeated_computed_layers', 'resnet18', 'no_leaf_module', 'inline_op_model']
test_models = ['repeated_computed_layers', 'resnet18', 'hanging_param_model', 'inline_op_model']
# test_models = ['bert']
for model_name in test_models:

View File

@ -41,7 +41,7 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
# 'gpt2', 'bert',
TEST_MODELS = ['no_leaf_module', 'gpt2', 'bert', 'simple_net', 'nested_model', 'repeated_computed_layers']
TEST_MODELS = ['hanging_param_model', 'gpt2', 'bert', 'simple_net', 'nested_model', 'repeated_computed_layers']
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])

View File

@ -1,77 +1,75 @@
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.nn import MoeLoss
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.context import MOE_CONTEXT
from colossalai.testing import assert_equal_in_group
from tests.test_zero.common import CONFIG, check_grads_padding, run_fwd_bwd
from tests.test_moe.test_moe_zero_init import MoeModel
@parameterize("enable_autocast", [False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_model_test(enable_autocast, shard_strategy_class):
shard_strategy = shard_strategy_class()
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
_, train_dataloader, _, optimizer_class, _ = get_components_func()
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload)
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda()
grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, enable_autocast)
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
grad_handler.handle_gradient()
check_grads_padding(model, zero_model, loose=True)
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
run_model_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_model(world_size=2)
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import colossalai
from colossalai.context import MOE_CONTEXT
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.nn import MoeLoss
from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_zero.common import CONFIG, check_grads_padding, run_fwd_bwd
@parameterize("enable_autocast", [False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_model_test(enable_autocast, shard_strategy_class):
shard_strategy = shard_strategy_class()
get_components_func = non_distributed_component_funcs.get_callable('hanging_param_model')
_, train_dataloader, _, optimizer_class, _ = get_components_func()
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload)
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda()
grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, enable_autocast)
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
grad_handler.handle_gradient()
check_grads_padding(model, zero_model, loose=True)
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
run_model_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_model(world_size=2)

View File

@ -1,126 +1,124 @@
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.amp import convert_to_apex_amp
from colossalai.nn import MoeLoss
from colossalai.nn.optimizer import CPUAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from colossalai.utils import get_current_device
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.context import MOE_CONTEXT
from colossalai.testing import assert_equal_in_group
from tests.test_zero.common import CONFIG, check_sharded_model_params
from tests.test_moe.test_moe_zero_init import MoeModel
def _run_step(model, optimizer, data, label, criterion, grad_handler):
model.train()
optimizer.zero_grad()
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
else:
loss.backward()
if grad_handler is not None:
grad_handler.handle_gradient()
optimizer.step()
@parameterize("cpu_offload", [True])
@parameterize("use_cpuadam", [True]) # We do not use Hybrid Adam right now, since it has a little bug
@parameterize("reuse_fp16_shard", [True, False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def _run_test_sharded_optim_v2(cpu_offload,
shard_strategy_class,
use_cpuadam,
reuse_fp16_shard,
gpu_margin_mem_ratio=0.0):
shard_strategy = shard_strategy_class()
if use_cpuadam and cpu_offload is False:
return
MOE_CONTEXT.reset_loss()
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
_, train_dataloader, _, optimizer_class, _ = get_components_func()
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
with ZeroInitContext(target_device=torch.device('cpu') if cpu_offload else get_current_device(),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model,
shard_strategy,
tensor_placement_policy='cpu' if cpu_offload else 'cuda',
reuse_fp16_shard=reuse_fp16_shard)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload.to(get_current_device()))
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda().float()
if use_cpuadam:
optimizer_class = CPUAdam
optim = optimizer_class(model.parameters(), lr=1e-3)
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model,
sharded_optim,
initial_scale=2**5,
gpu_margin_mem_ratio=gpu_margin_mem_ratio)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
apex_grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = data.cuda(), label.cuda()
_run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler)
_run_step(zero_model, sharded_optim, data, label, criterion, None)
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
for param in model.parameters():
assert not has_inf_or_nan(param)
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
_run_test_sharded_optim_v2()
# use_cpuadam = True can be used with cpu_offload = False
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_optim(world_size=4)
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.context import MOE_CONTEXT
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.nn import MoeLoss
from colossalai.nn.optimizer import CPUAdam
from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port, get_current_device
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_zero.common import CONFIG, check_sharded_model_params
def _run_step(model, optimizer, data, label, criterion, grad_handler):
model.train()
optimizer.zero_grad()
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
else:
loss.backward()
if grad_handler is not None:
grad_handler.handle_gradient()
optimizer.step()
@parameterize("cpu_offload", [True])
@parameterize("use_cpuadam", [True]) # We do not use Hybrid Adam right now, since it has a little bug
@parameterize("reuse_fp16_shard", [True, False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def _run_test_sharded_optim_v2(cpu_offload,
shard_strategy_class,
use_cpuadam,
reuse_fp16_shard,
gpu_margin_mem_ratio=0.0):
shard_strategy = shard_strategy_class()
if use_cpuadam and cpu_offload is False:
return
MOE_CONTEXT.reset_loss()
get_components_func = non_distributed_component_funcs.get_callable('hanging_param_model')
_, train_dataloader, _, optimizer_class, _ = get_components_func()
criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss)
with ZeroInitContext(target_device=torch.device('cpu') if cpu_offload else get_current_device(),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model,
shard_strategy,
tensor_placement_policy='cpu' if cpu_offload else 'cuda',
reuse_fp16_shard=reuse_fp16_shard)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload.to(get_current_device()))
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda().float()
if use_cpuadam:
optimizer_class = CPUAdam
optim = optimizer_class(model.parameters(), lr=1e-3)
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model,
sharded_optim,
initial_scale=2**5,
gpu_margin_mem_ratio=gpu_margin_mem_ratio)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
apex_grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = data.cuda(), label.cuda()
_run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler)
_run_step(zero_model, sharded_optim, data, label, criterion, None)
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
for param in model.parameters():
assert not has_inf_or_nan(param)
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
_run_test_sharded_optim_v2()
# use_cpuadam = True can be used with cpu_offload = False
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_optim(world_size=4)

View File

@ -23,7 +23,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
@parameterize("enable_autocast", [True])
@parameterize("shard_strategy_class", [BucketTensorShardStrategy])
def run_model_test(enable_autocast, shard_strategy_class):
test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'no_leaf_module']
test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'hanging_param_model']
shard_strategy = shard_strategy_class()
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)

View File

@ -1,25 +1,25 @@
from functools import partial
import colossalai
from colossalai.utils.cuda import get_current_device
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from common import CONFIG, check_sharded_model_params
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.nn.optimizer import CPUAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, check_sharded_model_params
def _run_step(model, optimizer, data, label, criterion, enable_autocast=False):
@ -45,7 +45,7 @@ def _run_step(model, optimizer, data, label, criterion, enable_autocast=False):
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
@parameterize("gpu_margin_mem_ratio", [0.0, 0.7])
def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, gpu_margin_mem_ratio):
test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'no_leaf_module']
test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'hanging_param_model']
shard_strategy = shard_strategy_class()
if use_cpuadam and cpu_offload is False: