2024-04-03 09:15:47 +00:00
|
|
|
import math
|
2023-09-09 14:45:36 +00:00
|
|
|
import warnings
|
2024-01-25 09:01:48 +00:00
|
|
|
from typing import List, Optional, Tuple, Union
|
2023-07-21 02:46:39 +00:00
|
|
|
|
|
|
|
import torch
|
2023-12-12 17:39:14 +00:00
|
|
|
import torch.nn.functional as F
|
2024-04-03 09:15:47 +00:00
|
|
|
import torch.utils.checkpoint
|
|
|
|
from torch import nn
|
2023-07-21 02:46:39 +00:00
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
2024-04-24 14:51:50 +00:00
|
|
|
from transformers.cache_utils import Cache
|
2023-07-21 02:46:39 +00:00
|
|
|
from transformers.modeling_outputs import (
|
|
|
|
BaseModelOutputWithPast,
|
|
|
|
CausalLMOutputWithPast,
|
|
|
|
SequenceClassifierOutputWithPast,
|
|
|
|
)
|
2024-04-03 09:15:47 +00:00
|
|
|
from transformers.models.llama.modeling_llama import (
|
|
|
|
LlamaForCausalLM,
|
|
|
|
LlamaForSequenceClassification,
|
|
|
|
LlamaModel,
|
2024-04-24 14:51:50 +00:00
|
|
|
_prepare_4d_causal_attention_mask,
|
|
|
|
_prepare_4d_causal_attention_mask_for_sdpa,
|
2024-04-03 09:15:47 +00:00
|
|
|
apply_rotary_pos_emb,
|
|
|
|
repeat_kv,
|
|
|
|
)
|
2023-07-21 02:46:39 +00:00
|
|
|
from transformers.utils import logging
|
|
|
|
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
2024-04-03 09:15:47 +00:00
|
|
|
from colossalai.shardformer.layer._operation import (
|
|
|
|
all_to_all_comm,
|
|
|
|
gather_forward_split_backward,
|
|
|
|
split_forward_gather_backward,
|
|
|
|
)
|
2023-12-12 17:39:14 +00:00
|
|
|
from colossalai.shardformer.shard import ShardConfig
|
2024-01-18 04:05:21 +00:00
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
from ..layer import ColoAttention, cross_entropy_1d
|
|
|
|
|
2024-01-08 03:39:16 +00:00
|
|
|
|
2023-07-21 02:46:39 +00:00
|
|
|
class LlamaPipelineForwards:
|
2023-09-19 06:20:26 +00:00
|
|
|
"""
|
2023-07-21 02:46:39 +00:00
|
|
|
This class serves as a micro library for forward function substitution of Llama models
|
|
|
|
under pipeline setting.
|
2023-09-19 06:20:26 +00:00
|
|
|
"""
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-11 17:22:56 +00:00
|
|
|
@staticmethod
|
2023-07-21 02:46:39 +00:00
|
|
|
def llama_model_forward(
|
|
|
|
self: LlamaModel,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
2023-12-12 17:39:14 +00:00
|
|
|
shard_config: ShardConfig = None,
|
2023-07-21 02:46:39 +00:00
|
|
|
):
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2023-09-19 06:20:26 +00:00
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
2023-07-21 02:46:39 +00:00
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
|
|
if stage_manager.is_first_stage():
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
2024-04-24 14:51:50 +00:00
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
2023-07-21 02:46:39 +00:00
|
|
|
elif input_ids is not None:
|
2024-04-24 14:51:50 +00:00
|
|
|
batch_size, seq_length = input_ids.shape[:2]
|
2023-07-21 02:46:39 +00:00
|
|
|
elif inputs_embeds is not None:
|
2024-04-24 14:51:50 +00:00
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
2023-07-21 02:46:39 +00:00
|
|
|
else:
|
2024-04-24 14:51:50 +00:00
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
2023-07-21 02:46:39 +00:00
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
else:
|
|
|
|
input_shape = hidden_states.shape[:-1]
|
|
|
|
batch_size, seq_length = input_shape
|
|
|
|
device = hidden_states.device
|
|
|
|
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
|
2023-08-14 09:43:33 +00:00
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
2023-07-21 02:46:39 +00:00
|
|
|
if output_attentions:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
output_hidden_states = False
|
|
|
|
if use_cache:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
|
|
|
|
if position_ids is None:
|
2023-09-19 06:20:26 +00:00
|
|
|
position_ids = torch.arange(
|
2024-04-24 14:51:50 +00:00
|
|
|
past_key_values_length,
|
|
|
|
seq_length + past_key_values_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=device,
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2024-04-24 14:51:50 +00:00
|
|
|
position_ids = position_ids.unsqueeze(0)
|
2023-07-21 02:46:39 +00:00
|
|
|
|
|
|
|
# embed positions, for the first stage, hidden_states is the input embeddings,
|
|
|
|
# for the other stages, hidden_states is the output of the previous stage
|
2024-03-27 03:19:32 +00:00
|
|
|
if shard_config.enable_flash_attention:
|
|
|
|
# in this case, attention_mask is a dict rather than a tensor
|
|
|
|
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
|
|
|
|
attention_mask = ColoAttention.prepare_attn_kwargs(
|
2024-04-24 14:51:50 +00:00
|
|
|
mask_shape,
|
|
|
|
hidden_states.dtype,
|
|
|
|
hidden_states.device,
|
|
|
|
q_padding_mask=attention_mask,
|
|
|
|
is_causal=True,
|
2023-11-16 13:34:04 +00:00
|
|
|
)
|
|
|
|
else:
|
2024-04-24 14:51:50 +00:00
|
|
|
if self._use_flash_attention_2:
|
|
|
|
# 2d mask is passed through the layers
|
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
|
|
elif self._use_sdpa and not output_attentions:
|
|
|
|
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
|
|
|
# the manual implementation that requires a 4D causal mask in all cases.
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
|
|
attention_mask,
|
|
|
|
(batch_size, seq_length),
|
|
|
|
inputs_embeds,
|
|
|
|
past_key_values_length,
|
2024-03-27 03:19:32 +00:00
|
|
|
)
|
|
|
|
else:
|
2024-04-24 14:51:50 +00:00
|
|
|
# 4d mask is passed through the layers
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
|
|
attention_mask,
|
|
|
|
(batch_size, seq_length),
|
|
|
|
hidden_states,
|
|
|
|
past_key_values_length,
|
2024-03-27 03:19:32 +00:00
|
|
|
)
|
2023-07-21 02:46:39 +00:00
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
2023-09-19 06:20:26 +00:00
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
2023-07-21 02:46:39 +00:00
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
# decoder layers
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_self_attns = () if output_attentions else None
|
2024-04-24 14:51:50 +00:00
|
|
|
next_decoder_cache = None
|
2023-07-21 02:46:39 +00:00
|
|
|
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
2024-04-01 03:34:58 +00:00
|
|
|
num_ckpt_layers = 0
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
num_ckpt_layers = end_idx - start_idx
|
|
|
|
# TODO: We can replace `gradient_checkpointing_enable` fn and initialize a gradient_checkpointing (List[bool]) for each layer
|
|
|
|
if shard_config.gradient_checkpoint_config is not None:
|
|
|
|
num_ckpt_layers = shard_config.gradient_checkpoint_config.get_num_ckpt_layers(
|
|
|
|
stage=stage_manager.stage,
|
2024-04-25 07:19:30 +00:00
|
|
|
num_stages=stage_manager.num_stages,
|
2024-04-01 03:34:58 +00:00
|
|
|
num_layers=end_idx - start_idx,
|
2024-04-24 14:51:50 +00:00
|
|
|
model_chunk_id=(stage_manager.model_chunk_id if stage_manager.is_interleave else 0),
|
2024-04-25 07:19:30 +00:00
|
|
|
num_model_chunks=stage_manager.num_model_chunks,
|
2024-04-01 03:34:58 +00:00
|
|
|
)
|
|
|
|
assert num_ckpt_layers <= end_idx - start_idx
|
|
|
|
|
2023-07-21 02:46:39 +00:00
|
|
|
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
2024-04-01 03:34:58 +00:00
|
|
|
if idx - start_idx < num_ckpt_layers:
|
2024-04-24 14:51:50 +00:00
|
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
|
|
decoder_layer.__call__,
|
2023-07-21 02:46:39 +00:00
|
|
|
hidden_states,
|
|
|
|
attention_mask,
|
|
|
|
position_ids,
|
2024-04-24 14:51:50 +00:00
|
|
|
past_key_values,
|
|
|
|
output_attentions,
|
|
|
|
use_cache,
|
2023-07-21 02:46:39 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
layer_outputs = decoder_layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
2024-04-24 14:51:50 +00:00
|
|
|
past_key_value=past_key_values,
|
2023-07-21 02:46:39 +00:00
|
|
|
output_attentions=output_attentions,
|
|
|
|
use_cache=use_cache,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if use_cache:
|
2024-04-24 14:51:50 +00:00
|
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
2023-07-21 02:46:39 +00:00
|
|
|
if output_attentions:
|
|
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
|
|
# add hidden states from the last decoder layer
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
if not return_dict:
|
2024-04-24 14:51:50 +00:00
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
next_cache,
|
|
|
|
all_hidden_states,
|
|
|
|
all_self_attns,
|
|
|
|
]
|
|
|
|
if v is not None
|
|
|
|
)
|
2023-07-21 02:46:39 +00:00
|
|
|
return BaseModelOutputWithPast(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=next_cache,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attns,
|
|
|
|
)
|
|
|
|
# always return dict for imediate stage
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": hidden_states}
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-11 17:22:56 +00:00
|
|
|
@staticmethod
|
2023-07-21 02:46:39 +00:00
|
|
|
def llama_for_causal_lm_forward(
|
|
|
|
self: LlamaForCausalLM,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
2024-01-18 04:05:21 +00:00
|
|
|
shard_config: ShardConfig = None,
|
2023-07-21 02:46:39 +00:00
|
|
|
):
|
|
|
|
r"""
|
2023-09-19 06:20:26 +00:00
|
|
|
Args:
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
Returns:
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
Example:
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
```python
|
|
|
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2024-03-05 13:48:46 +00:00
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
2023-09-19 06:20:26 +00:00
|
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
>>> # Generate
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
2024-03-05 13:48:46 +00:00
|
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
2023-09-19 06:20:26 +00:00
|
|
|
```"""
|
2023-07-21 02:46:39 +00:00
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2023-09-19 06:20:26 +00:00
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
2023-07-21 02:46:39 +00:00
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-08-14 09:43:33 +00:00
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
2023-07-21 02:46:39 +00:00
|
|
|
if output_attentions:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
output_hidden_states = False
|
|
|
|
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
|
|
outputs = LlamaPipelineForwards.llama_model_forward(
|
|
|
|
self.model,
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
2024-03-27 03:19:32 +00:00
|
|
|
shard_config=shard_config,
|
2023-07-21 02:46:39 +00:00
|
|
|
)
|
|
|
|
past_key_values = None
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
# Flatten the tokens
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
# Enable model parallelism
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
2024-03-25 09:21:51 +00:00
|
|
|
if shard_config.enable_tensor_parallelism and shard_config.parallel_output:
|
2023-12-12 17:39:14 +00:00
|
|
|
new_vocab_size = logits.shape[-1]
|
|
|
|
shift_logits = shift_logits.view(-1, new_vocab_size)
|
2024-01-18 04:05:21 +00:00
|
|
|
loss = cross_entropy_1d(
|
[shardformer] refactor embedding resize (#5603)
* [branch rebase] rebase main to Feature/resize_embedding (#5554)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [CI] run pre-commit (#5577)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
* run pre-commit
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [rebase] rebase main to resize-embedding (#5581)
* [release] grok-1 314b inference (#5490)
* [release] grok-1 inference
* [release] grok-1 inference
* [release] grok-1 inference
* [example] update Grok-1 inference (#5495)
* revise grok-1 example
* remove unused arg in scripts
* prevent re-installing torch
* update readme
* revert modifying colossalai requirements
* add perf
* trivial
* add tokenizer url
* [hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch
* fix: use return_outputs=False to eliminate extra memory consumption
* feat: add return_outputs warning
* style: remove `return_outputs=False` as it is the default value
* [release] grok-1 inference benchmark (#5500)
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [shardformer]Fix lm parallel. (#5480)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* fix lm forward distribution
* fix
* test ci
* fix
* [fix] fix grok-1 example typo (#5506)
* [devops] fix example test ci (#5504)
* Fix ColoTensorSpec for py11 (#5440)
* fixed layout converter caching and updated tester
* Empty-Commit
* [shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462)
* [extension] update api
* [feature] add colo attention
* [feature] update sdpa
* [feature] update npu attention
* [feature] update flash-attn
* [test] add flash attn test
* [test] update flash attn test
* [shardformer] update modeling to fit colo attention (#5465)
* [misc] refactor folder structure
* [shardformer] update llama flash-attn
* [shardformer] fix llama policy
* [devops] update tensornvme install
* [test] update llama test
* [shardformer] update colo attn kernel dispatch
* [shardformer] update blip2
* [shardformer] update chatglm
* [shardformer] update gpt2
* [shardformer] update gptj
* [shardformer] update opt
* [shardformer] update vit
* [shardformer] update colo attention mask prep
* [shardformer] update whisper
* [test] fix shardformer tests (#5514)
* [test] fix shardformer tests
* [test] fix shardformer tests
* [format] applied code formatting on changed files in pull request 5510 (#5517)
Co-authored-by: github-actions <github-actions@github.com>
* [shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution
* Change static methods for t5 layer distribution to member functions
* Change static methods for whisper layer distribution to member functions
* Replace whisper policy usage with self one
* Fix test case to use non-static layer distribution methods
* fix: fix typo
---------
Co-authored-by: Wenhao Chen <cwher@outlook.com>
* [Fix] Grok-1 use tokenizer from the same pretrained path (#5532)
* [fix] use tokenizer from the same pretrained path
* trust remote code
* [ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all
* fix and tested ppo
* 2 nd round refactor
* add ci tests
* fix ci
* fix ci
* fix readme, style
* fix readme style
* fix style, fix benchmark
* reproduce benchmark result, remove useless files
* rename to ColossalChat
* use new image
* fix ci workflow
* fix ci
* use local model/tokenizer for ci tests
* fix ci
* fix ci
* fix ci
* fix ci timeout
* fix rm progress bar. fix ci timeout
* fix ci
* fix ci typo
* remove 3d plugin from ci temporary
* test environment
* cannot save optimizer
* support chat template
* fix readme
* fix path
* test ci locally
* restore build_or_pr
* fix ci data path
* fix benchmark
* fix ci, move ci tests to 3080, disable fast tokenizer
* move ci to 85
* support flash attention 2
* add all-in-one data preparation script. Fix colossal-llama2-chat chat template
* add hardware requirements
* move ci test data
* fix save_model, add unwrap
* fix missing bos
* fix missing bos; support grad accumulation with gemini
* fix ci
* fix ci
* fix ci
* fix llama2 chat template config
* debug sft
* debug sft
* fix colossalai version requirement
* fix ci
* add sanity check to prevent NaN loss
* fix requirements
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* update readme
* update readme
* update readme and ignore
* fix logger bug
* support parallel_output
* modify data preparation logic
* fix tokenization
* update lr
* fix inference
* run pre-commit
---------
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508)
* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`
* feat: apply `GradientCheckpointConfig` to policy and llama_forward
* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager
* fix: add optional args for `distribute_layer` and `get_stage_index`
* fix: fix changed API calls
* test: update llama tests
* style: polish `GradientCheckpointConfig`
* fix: fix pipeline utils tests
* fix incorrect sharding without zero (#5545)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization
* validate sequence parallel in llama (code to be polished)
* shardformer api writing
* integrate sequence parallel in ShardFormer
* fix pp bugs and sp bugs for LlaMa model
* integrating ring-based sequence parallelism into ShardFormer
* [sequence parallelism]: Add fused megatron function
* integrating ring-based sequence parallelism into ShardFormer
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* fix bugs when useing sp and flashattention together
* fix operation function name
* support flash attention for ulysses-style sp
* clarify sp process group
* fix compatibility bugs in moe plugin
* fix fused linear bugs
* fix linear layer test
* support gpt model all-to-all sp
* modify shard data dimension (meant to be dim=-1)
* support megtron-style sp and distributed attn for llama model
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* finish sp mode 3 support for gpt
* using all_to_all_single when batch size is 1
* support mode 2 sp in gpt2 (#5)
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* refactor ring implementation
* support mode 2 sp in gpt2
* polish code
* enable distributed attn mask when using sp mode 2 and 3 in llama
* automatically enable flash attn when using sp mode 2 and 3 in llama
* inplace attn mask
* add zero2 support for sequence parallel
* polish code
* fix bugs
* fix gemini checkpoint io
* loose tensor checking atol and rtol
* add comment
* fix llama layernorm grad
* fix zero grad
* fix zero grad
* fix conflict
* update split and gather auto grad func
* sequence parallel: inside text split (#6)
* polish code (part 1)
* polish code (part 2)
* polish code (part 2.5)
* polish code (part 3)
* sequence parallel: inside text split
* miscellaneous minor fixes
* polish code
* fix ulysses style ZeRO
* sequence parallel: inside text split
* miscellaneous minor fixes
* disaggregate sp group and dp group for sp
* fix llama and gpt sp
* polish code
* move ulysses grad sync to ddp (#9)
* remove zero_stage and unbind the grad sync for alltoall sp
* add 2d group creation test
* move ulysses grad sync to ddp
* add 2d group creation test
* remove useless code
* change shard config not to enable sp when enable_all_optimizations
* add sp warnings for several model
* remove useless code
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* [hotfix] quick fixes to make legacy tutorials runnable (#5559)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [fix] fix typo s/muiti-node /multi-node etc. (#5448)
* [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548)
* [devops] remove post commit ci (#5566)
* [devops] remove post commit ci
* [misc] run pre-commit on all files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---------
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [shardformer]enable padding vocabulary size. (#5489)
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* padding vocab
* padding vocabe
* fix
* fix
* fxi
* test ci
* fix
fix
fix
fix
* fix
fix
* fix
* fix
* Update hybrid_parallel_plugin.py
fix
fix
fix
* fix
fix
* fix
fix
* fix
* resolve super init
resolve super init
resolve super init
resolve super init
* resolve comments
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* vocab checkpointio
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
fix
fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* padding vocab
* fix
* fix
fix
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* cherry-pick
* revert moe modify
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
fix
fix
fix
fix
fix
fix
fix
* resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
* ptensor
ptensor
resolve comments
fix
fix
fix
fix
fix
resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix rebase
* fix rebase
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 08:10:18 +00:00
|
|
|
shift_logits,
|
|
|
|
shift_labels,
|
|
|
|
process_group=shard_config.tensor_parallel_process_group,
|
|
|
|
vocab_size=self.lm_head.out_features,
|
2024-01-18 04:05:21 +00:00
|
|
|
)
|
2023-12-12 17:39:14 +00:00
|
|
|
else:
|
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
|
|
loss = loss_fct(shift_logits, shift_labels)
|
2023-07-21 02:46:39 +00:00
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (logits,) + outputs[1:]
|
|
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
|
|
|
|
return CausalLMOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
|
|
|
else:
|
2023-09-19 06:20:26 +00:00
|
|
|
hidden_states = outputs.get("hidden_states")
|
|
|
|
return {"hidden_states": hidden_states}
|
2023-07-21 02:46:39 +00:00
|
|
|
|
2023-09-11 17:22:56 +00:00
|
|
|
@staticmethod
|
2023-07-21 02:46:39 +00:00
|
|
|
def llama_for_sequence_classification_forward(
|
|
|
|
self: LlamaForSequenceClassification,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
2023-12-12 17:39:14 +00:00
|
|
|
shard_config: ShardConfig = None,
|
2023-07-21 02:46:39 +00:00
|
|
|
):
|
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
"""
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2023-08-14 09:43:33 +00:00
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
2023-07-21 02:46:39 +00:00
|
|
|
if output_attentions:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
2023-07-21 02:46:39 +00:00
|
|
|
output_hidden_states = False
|
|
|
|
|
|
|
|
transformer_outputs = LlamaPipelineForwards.llama_model_forward(
|
|
|
|
self.model,
|
|
|
|
input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
2024-03-27 03:19:32 +00:00
|
|
|
shard_config=shard_config,
|
2023-07-21 02:46:39 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if input_ids is not None:
|
|
|
|
batch_size = input_ids.shape[0]
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
else:
|
|
|
|
batch_size = hidden_states.shape[0]
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
logits = self.score(hidden_states)
|
|
|
|
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
if self.config.pad_token_id is None:
|
|
|
|
sequence_lengths = -1
|
|
|
|
else:
|
|
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
|
|
|
else:
|
|
|
|
sequence_lengths = -1
|
|
|
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
labels = labels.to(logits.device)
|
|
|
|
if self.config.problem_type is None:
|
|
|
|
if self.num_labels == 1:
|
|
|
|
self.config.problem_type = "regression"
|
|
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
self.config.problem_type = "single_label_classification"
|
|
|
|
else:
|
|
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
|
|
|
|
if self.config.problem_type == "regression":
|
|
|
|
loss_fct = MSELoss()
|
|
|
|
if self.num_labels == 1:
|
|
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
|
|
else:
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
elif self.config.problem_type == "single_label_classification":
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
|
|
loss_fct = BCEWithLogitsLoss()
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
if not return_dict:
|
|
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=pooled_logits,
|
|
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
2023-09-19 06:20:26 +00:00
|
|
|
hidden_states = transformer_outputs.get("hidden_states")
|
|
|
|
return {"hidden_states": hidden_states}
|
2023-08-07 08:41:07 +00:00
|
|
|
|
|
|
|
|
2024-04-03 09:15:47 +00:00
|
|
|
def get_llama_flash_attention_forward(shard_config, sp_mode, sp_group, sp_size):
|
2023-08-07 08:41:07 +00:00
|
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
|
|
|
|
2023-09-09 14:45:36 +00:00
|
|
|
try:
|
|
|
|
from transformers.models.llama.modeling_llama import repeat_kv
|
|
|
|
except:
|
|
|
|
warnings.warn("using llamav1, llamav1 hasn't repeat_kv function")
|
|
|
|
|
2023-08-07 08:41:07 +00:00
|
|
|
def forward(
|
|
|
|
self: LlamaAttention,
|
|
|
|
hidden_states: torch.Tensor,
|
2024-03-27 03:19:32 +00:00
|
|
|
attention_mask: Optional[dict] = None,
|
2023-08-07 08:41:07 +00:00
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
2024-04-24 14:51:50 +00:00
|
|
|
past_key_value: Optional[Cache] = None,
|
2023-08-07 08:41:07 +00:00
|
|
|
output_attentions: bool = False,
|
|
|
|
use_cache: bool = False,
|
2023-11-16 12:15:59 +00:00
|
|
|
**kwargs,
|
2023-08-07 08:41:07 +00:00
|
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
2024-04-24 14:51:50 +00:00
|
|
|
if "padding_mask" in kwargs:
|
|
|
|
warnings.warn(
|
|
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
|
|
)
|
2023-08-07 08:41:07 +00:00
|
|
|
bsz, q_len, _ = hidden_states.size()
|
2024-04-03 09:15:47 +00:00
|
|
|
|
|
|
|
if sp_mode in ["split_gather", "ring"]:
|
|
|
|
q_len *= sp_size
|
2023-08-07 08:41:07 +00:00
|
|
|
assert q_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
|
|
|
|
|
2024-04-03 09:15:47 +00:00
|
|
|
query_states = self.q_proj(hidden_states)
|
|
|
|
key_states = self.k_proj(hidden_states)
|
|
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
|
|
if sp_mode == "all_to_all":
|
|
|
|
query_states = all_to_all_comm(query_states, sp_group)
|
|
|
|
key_states = all_to_all_comm(key_states, sp_group)
|
|
|
|
value_states = all_to_all_comm(value_states, sp_group)
|
|
|
|
bsz, q_len, _ = query_states.size()
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
2023-08-07 08:41:07 +00:00
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
|
|
if past_key_value is not None:
|
2024-04-24 14:51:50 +00:00
|
|
|
if self.layer_idx is None:
|
|
|
|
raise ValueError(
|
|
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
|
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
|
|
|
"with a layer index."
|
|
|
|
)
|
|
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
|
|
2023-08-07 08:41:07 +00:00
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
2024-04-24 14:51:50 +00:00
|
|
|
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
|
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
2023-08-07 08:41:07 +00:00
|
|
|
|
2024-04-24 14:51:50 +00:00
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
2023-09-09 14:45:36 +00:00
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
|
|
|
|
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
2023-08-07 08:41:07 +00:00
|
|
|
|
2024-04-03 09:15:47 +00:00
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
|
|
if sp_mode == "all_to_all":
|
|
|
|
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
|
2023-08-07 08:41:07 +00:00
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
|
|
return forward
|
2023-12-12 17:39:14 +00:00
|
|
|
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
assert shard_config.enable_flash_attention, "Flash Attention is not enabled."
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self: LlamaModel,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
|
|
|
|
if position_ids is None:
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
position_ids = torch.arange(
|
2024-04-24 14:51:50 +00:00
|
|
|
past_key_values_length,
|
|
|
|
seq_length + past_key_values_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=device,
|
2024-03-27 03:19:32 +00:00
|
|
|
)
|
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
|
|
else:
|
|
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
# embed positions
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
|
|
# in this case, attention_mask is a dict rather than a tensor
|
|
|
|
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
|
|
|
|
attention_mask = ColoAttention.prepare_attn_kwargs(
|
2024-04-24 14:51:50 +00:00
|
|
|
mask_shape,
|
|
|
|
hidden_states.dtype,
|
|
|
|
hidden_states.device,
|
|
|
|
q_padding_mask=attention_mask,
|
|
|
|
is_causal=True,
|
2024-03-27 03:19:32 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
# decoder layers
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_self_attns = () if output_attentions else None
|
|
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
|
|
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
# None for past_key_value
|
|
|
|
return module(*inputs, past_key_value, output_attentions)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(decoder_layer),
|
|
|
|
hidden_states,
|
|
|
|
attention_mask,
|
|
|
|
position_ids,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
layer_outputs = decoder_layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_value=past_key_value,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
use_cache=use_cache,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if use_cache:
|
|
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
|
|
# add hidden states from the last decoder layer
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
return BaseModelOutputWithPast(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=next_cache,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attns,
|
|
|
|
)
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
|
2023-12-12 17:39:14 +00:00
|
|
|
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
|
|
|
from transformers import LlamaForCausalLM
|
2024-01-18 04:05:21 +00:00
|
|
|
|
2023-12-12 17:39:14 +00:00
|
|
|
def forward(
|
|
|
|
self: LlamaForCausalLM,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
r"""
|
|
|
|
Args:
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
```python
|
|
|
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
|
|
|
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
|
|
|
|
>>> # Generate
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
|
|
```"""
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
|
|
outputs = self.model(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
|
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
|
|
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
|
|
logits = torch.cat(logits, dim=-1)
|
|
|
|
else:
|
|
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
logits = logits.float()
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
# Enable model parallelism
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
2024-03-25 09:21:51 +00:00
|
|
|
new_vocab_size = logits.shape[-1]
|
|
|
|
shift_logits = shift_logits.view(-1, new_vocab_size)
|
|
|
|
loss = cross_entropy_1d(
|
[shardformer] refactor embedding resize (#5603)
* [branch rebase] rebase main to Feature/resize_embedding (#5554)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [CI] run pre-commit (#5577)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
* run pre-commit
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [rebase] rebase main to resize-embedding (#5581)
* [release] grok-1 314b inference (#5490)
* [release] grok-1 inference
* [release] grok-1 inference
* [release] grok-1 inference
* [example] update Grok-1 inference (#5495)
* revise grok-1 example
* remove unused arg in scripts
* prevent re-installing torch
* update readme
* revert modifying colossalai requirements
* add perf
* trivial
* add tokenizer url
* [hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch
* fix: use return_outputs=False to eliminate extra memory consumption
* feat: add return_outputs warning
* style: remove `return_outputs=False` as it is the default value
* [release] grok-1 inference benchmark (#5500)
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [shardformer]Fix lm parallel. (#5480)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* fix lm forward distribution
* fix
* test ci
* fix
* [fix] fix grok-1 example typo (#5506)
* [devops] fix example test ci (#5504)
* Fix ColoTensorSpec for py11 (#5440)
* fixed layout converter caching and updated tester
* Empty-Commit
* [shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462)
* [extension] update api
* [feature] add colo attention
* [feature] update sdpa
* [feature] update npu attention
* [feature] update flash-attn
* [test] add flash attn test
* [test] update flash attn test
* [shardformer] update modeling to fit colo attention (#5465)
* [misc] refactor folder structure
* [shardformer] update llama flash-attn
* [shardformer] fix llama policy
* [devops] update tensornvme install
* [test] update llama test
* [shardformer] update colo attn kernel dispatch
* [shardformer] update blip2
* [shardformer] update chatglm
* [shardformer] update gpt2
* [shardformer] update gptj
* [shardformer] update opt
* [shardformer] update vit
* [shardformer] update colo attention mask prep
* [shardformer] update whisper
* [test] fix shardformer tests (#5514)
* [test] fix shardformer tests
* [test] fix shardformer tests
* [format] applied code formatting on changed files in pull request 5510 (#5517)
Co-authored-by: github-actions <github-actions@github.com>
* [shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution
* Change static methods for t5 layer distribution to member functions
* Change static methods for whisper layer distribution to member functions
* Replace whisper policy usage with self one
* Fix test case to use non-static layer distribution methods
* fix: fix typo
---------
Co-authored-by: Wenhao Chen <cwher@outlook.com>
* [Fix] Grok-1 use tokenizer from the same pretrained path (#5532)
* [fix] use tokenizer from the same pretrained path
* trust remote code
* [ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all
* fix and tested ppo
* 2 nd round refactor
* add ci tests
* fix ci
* fix ci
* fix readme, style
* fix readme style
* fix style, fix benchmark
* reproduce benchmark result, remove useless files
* rename to ColossalChat
* use new image
* fix ci workflow
* fix ci
* use local model/tokenizer for ci tests
* fix ci
* fix ci
* fix ci
* fix ci timeout
* fix rm progress bar. fix ci timeout
* fix ci
* fix ci typo
* remove 3d plugin from ci temporary
* test environment
* cannot save optimizer
* support chat template
* fix readme
* fix path
* test ci locally
* restore build_or_pr
* fix ci data path
* fix benchmark
* fix ci, move ci tests to 3080, disable fast tokenizer
* move ci to 85
* support flash attention 2
* add all-in-one data preparation script. Fix colossal-llama2-chat chat template
* add hardware requirements
* move ci test data
* fix save_model, add unwrap
* fix missing bos
* fix missing bos; support grad accumulation with gemini
* fix ci
* fix ci
* fix ci
* fix llama2 chat template config
* debug sft
* debug sft
* fix colossalai version requirement
* fix ci
* add sanity check to prevent NaN loss
* fix requirements
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* update readme
* update readme
* update readme and ignore
* fix logger bug
* support parallel_output
* modify data preparation logic
* fix tokenization
* update lr
* fix inference
* run pre-commit
---------
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508)
* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`
* feat: apply `GradientCheckpointConfig` to policy and llama_forward
* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager
* fix: add optional args for `distribute_layer` and `get_stage_index`
* fix: fix changed API calls
* test: update llama tests
* style: polish `GradientCheckpointConfig`
* fix: fix pipeline utils tests
* fix incorrect sharding without zero (#5545)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization
* validate sequence parallel in llama (code to be polished)
* shardformer api writing
* integrate sequence parallel in ShardFormer
* fix pp bugs and sp bugs for LlaMa model
* integrating ring-based sequence parallelism into ShardFormer
* [sequence parallelism]: Add fused megatron function
* integrating ring-based sequence parallelism into ShardFormer
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* fix bugs when useing sp and flashattention together
* fix operation function name
* support flash attention for ulysses-style sp
* clarify sp process group
* fix compatibility bugs in moe plugin
* fix fused linear bugs
* fix linear layer test
* support gpt model all-to-all sp
* modify shard data dimension (meant to be dim=-1)
* support megtron-style sp and distributed attn for llama model
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* finish sp mode 3 support for gpt
* using all_to_all_single when batch size is 1
* support mode 2 sp in gpt2 (#5)
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* refactor ring implementation
* support mode 2 sp in gpt2
* polish code
* enable distributed attn mask when using sp mode 2 and 3 in llama
* automatically enable flash attn when using sp mode 2 and 3 in llama
* inplace attn mask
* add zero2 support for sequence parallel
* polish code
* fix bugs
* fix gemini checkpoint io
* loose tensor checking atol and rtol
* add comment
* fix llama layernorm grad
* fix zero grad
* fix zero grad
* fix conflict
* update split and gather auto grad func
* sequence parallel: inside text split (#6)
* polish code (part 1)
* polish code (part 2)
* polish code (part 2.5)
* polish code (part 3)
* sequence parallel: inside text split
* miscellaneous minor fixes
* polish code
* fix ulysses style ZeRO
* sequence parallel: inside text split
* miscellaneous minor fixes
* disaggregate sp group and dp group for sp
* fix llama and gpt sp
* polish code
* move ulysses grad sync to ddp (#9)
* remove zero_stage and unbind the grad sync for alltoall sp
* add 2d group creation test
* move ulysses grad sync to ddp
* add 2d group creation test
* remove useless code
* change shard config not to enable sp when enable_all_optimizations
* add sp warnings for several model
* remove useless code
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* [hotfix] quick fixes to make legacy tutorials runnable (#5559)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [fix] fix typo s/muiti-node /multi-node etc. (#5448)
* [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548)
* [devops] remove post commit ci (#5566)
* [devops] remove post commit ci
* [misc] run pre-commit on all files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---------
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [shardformer]enable padding vocabulary size. (#5489)
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* padding vocab
* padding vocabe
* fix
* fix
* fxi
* test ci
* fix
fix
fix
fix
* fix
fix
* fix
* fix
* Update hybrid_parallel_plugin.py
fix
fix
fix
* fix
fix
* fix
fix
* fix
* resolve super init
resolve super init
resolve super init
resolve super init
* resolve comments
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* vocab checkpointio
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
fix
fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* padding vocab
* fix
* fix
fix
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* cherry-pick
* revert moe modify
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
fix
fix
fix
fix
fix
fix
fix
* resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
* ptensor
ptensor
resolve comments
fix
fix
fix
fix
fix
resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix rebase
* fix rebase
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 08:10:18 +00:00
|
|
|
shift_logits,
|
|
|
|
shift_labels,
|
|
|
|
process_group=shard_config.tensor_parallel_process_group,
|
|
|
|
vocab_size=self.lm_head.out_features,
|
2024-03-25 09:21:51 +00:00
|
|
|
)
|
2024-02-27 14:44:07 +00:00
|
|
|
|
2023-12-12 17:39:14 +00:00
|
|
|
if not return_dict:
|
|
|
|
output = (logits,) + outputs[1:]
|
|
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
|
|
|
|
return CausalLMOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
2024-01-18 04:05:21 +00:00
|
|
|
|
2023-12-12 17:39:14 +00:00
|
|
|
return forward
|
2024-04-03 09:15:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group):
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
use_cache: bool = False,
|
|
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
# sp: modify sp_len when sequence parallel mode is ring
|
|
|
|
if sp_mode in ["split_gather", "ring"]:
|
|
|
|
q_len *= sp_size
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
|
|
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
|
|
|
query_slices = self.q_proj.weight.split(
|
|
|
|
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
|
|
|
)
|
|
|
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
|
|
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
|
|
|
|
|
|
|
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
|
|
query_states = torch.cat(query_states, dim=-1)
|
|
|
|
|
|
|
|
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
|
|
key_states = torch.cat(key_states, dim=-1)
|
|
|
|
|
|
|
|
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
|
|
value_states = torch.cat(value_states, dim=-1)
|
|
|
|
|
|
|
|
else:
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
|
|
key_states = self.k_proj(hidden_states)
|
|
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
|
|
if sp_mode == "all_to_all":
|
|
|
|
query_states = all_to_all_comm(query_states, sp_group)
|
|
|
|
key_states = all_to_all_comm(key_states, sp_group)
|
|
|
|
value_states = all_to_all_comm(value_states, sp_group)
|
|
|
|
bsz, q_len, _ = query_states.size()
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
|
|
if past_key_value is not None:
|
|
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
# reuse k, v, self_attention
|
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
|
|
raise ValueError(
|
|
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
|
|
|
f" {attn_weights.size()}"
|
|
|
|
)
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
|
|
raise ValueError(
|
|
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
|
|
|
)
|
|
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
|
|
# upcast attention to fp32
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
|
raise ValueError(
|
|
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
|
|
f" {attn_output.size()}"
|
|
|
|
)
|
|
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
|
|
if sp_mode == "all_to_all":
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
|
|
|
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
|
|
|
|
else:
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
|
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
|
|
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
|
|
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
|
|
|
else:
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
|
|
|
|
if not output_attentions:
|
|
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
|
|
|
|
def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
# modify past_key_values_length when using sequence parallel
|
|
|
|
past_key_values_length *= sp_size
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
|
|
|
|
if position_ids is None:
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
position_ids = torch.arange(
|
2024-04-24 14:51:50 +00:00
|
|
|
past_key_values_length,
|
|
|
|
seq_length + past_key_values_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=device,
|
2024-04-03 09:15:47 +00:00
|
|
|
)
|
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
|
|
else:
|
|
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
|
|
|
|
if sp_mode in ["ring", "split_gather"]:
|
|
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
|
|
|
|
elif sp_mode == "all_to_all":
|
|
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
|
|
|
|
|
|
|
|
if attention_mask is None:
|
|
|
|
attention_mask = torch.ones(
|
2024-04-24 14:51:50 +00:00
|
|
|
(batch_size, seq_length_with_past),
|
|
|
|
dtype=torch.bool,
|
|
|
|
device=inputs_embeds.device,
|
2024-04-03 09:15:47 +00:00
|
|
|
)
|
|
|
|
|
2024-04-24 14:51:50 +00:00
|
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
2024-04-03 09:15:47 +00:00
|
|
|
attention_mask, attention_mask.shape, inputs_embeds, past_key_values_length
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
|
|
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
# decoder layers
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_self_attns = () if output_attentions else None
|
|
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
|
|
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
|
|
|
|
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
# None for past_key_value
|
|
|
|
return module(*inputs, past_key_value, output_attentions)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(decoder_layer),
|
|
|
|
hidden_states,
|
|
|
|
attention_mask,
|
|
|
|
position_ids,
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
layer_outputs = decoder_layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_value=past_key_value,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
use_cache=use_cache,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if use_cache:
|
|
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
|
|
if sp_mode == "ring" or sp_mode == "split_gather":
|
|
|
|
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
|
|
|
|
elif sp_mode == "all_to_all":
|
|
|
|
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
|
|
|
|
|
|
|
|
# add hidden states from the last decoder layer
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
|
|
|
|
return BaseModelOutputWithPast(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=next_cache,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attns,
|
|
|
|
)
|
|
|
|
|
|
|
|
return forward
|