|
|
|
from typing import Callable, List, Optional, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.modeling_outputs import (
|
|
|
|
BaseModelOutputWithPast,
|
|
|
|
CausalLMOutputWithPast,
|
|
|
|
SequenceClassifierOutputWithPast,
|
|
|
|
)
|
|
|
|
from transformers.models.llama.modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel
|
|
|
|
from transformers.utils import logging
|
|
|
|
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaPipelineForwards:
|
|
|
|
'''
|
|
|
|
This class serves as a micro library for forward function substitution of Llama models
|
|
|
|
under pipeline setting.
|
|
|
|
'''
|
|
|
|
|
|
|
|
def llama_model_forward(
|
|
|
|
self: LlamaModel,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
):
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (output_hidden_states
|
|
|
|
if output_hidden_states is not None else self.config.output_hidden_states)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
|
|
if stage_manager.is_first_stage():
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
else:
|
|
|
|
input_shape = hidden_states.shape[:-1]
|
|
|
|
batch_size, seq_length = input_shape
|
|
|
|
device = hidden_states.device
|
|
|
|
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
|
|
if output_attentions:
|
|
|
|
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
|
|
|
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
|
|
|
output_hidden_states = False
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
|
|
|
|
if position_ids is None:
|
|
|
|
position_ids = torch.arange(past_key_values_length,
|
|
|
|
seq_length + past_key_values_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=device)
|
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
|
|
else:
|
|
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
|
|
|
|
# embed positions, for the first stage, hidden_states is the input embeddings,
|
|
|
|
# for the other stages, hidden_states is the output of the previous stage
|
|
|
|
if attention_mask is None:
|
|
|
|
attention_mask = torch.ones((batch_size, seq_length_with_past),
|
|
|
|
dtype=torch.bool,
|
|
|
|
device=hidden_states.device)
|
|
|
|
attention_mask = self._prepare_decoder_attention_mask(attention_mask, (batch_size, seq_length), hidden_states,
|
|
|
|
past_key_values_length)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
# decoder layers
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_self_attns = () if output_attentions else None
|
|
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
|
|
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
# None for past_key_value
|
|
|
|
return module(*inputs, output_attentions, None)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(decoder_layer),
|
|
|
|
hidden_states,
|
|
|
|
attention_mask,
|
|
|
|
position_ids,
|
|
|
|
None,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
layer_outputs = decoder_layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_value=past_key_value,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
use_cache=use_cache,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if use_cache:
|
|
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
|
|
# add hidden states from the last decoder layer
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
return BaseModelOutputWithPast(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=next_cache,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attns,
|
|
|
|
)
|
|
|
|
# always return dict for imediate stage
|
|
|
|
return {'hidden_states': hidden_states}
|
|
|
|
|
|
|
|
def llama_for_causal_lm_forward(
|
|
|
|
self: LlamaForCausalLM,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
):
|
|
|
|
r"""
|
|
|
|
Args:
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
```python
|
|
|
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
|
|
|
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
|
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
|
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
|
|
|
|
>>> # Generate
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
|
|
|
```"""
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (output_hidden_states
|
|
|
|
if output_hidden_states is not None else self.config.output_hidden_states)
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
|
|
if output_attentions:
|
|
|
|
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
|
|
|
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
|
|
|
output_hidden_states = False
|
|
|
|
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
|
|
outputs = LlamaPipelineForwards.llama_model_forward(
|
|
|
|
self.model,
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
)
|
|
|
|
past_key_values = None
|
|
|
|
all_hidden_states = None
|
|
|
|
all_self_attentions = None
|
|
|
|
all_cross_attentions = None
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
# Flatten the tokens
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
# Enable model parallelism
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (logits,) + outputs[1:]
|
|
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
|
|
|
|
return CausalLMOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
hidden_states = outputs.get('hidden_states')
|
|
|
|
return {'hidden_states': hidden_states}
|
|
|
|
|
|
|
|
def llama_for_sequence_classification_forward(
|
|
|
|
self: LlamaForSequenceClassification,
|
|
|
|
input_ids: torch.LongTensor = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
):
|
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
"""
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
|
|
if output_attentions:
|
|
|
|
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
|
|
|
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
|
|
|
output_hidden_states = False
|
|
|
|
|
|
|
|
transformer_outputs = LlamaPipelineForwards.llama_model_forward(
|
|
|
|
self.model,
|
|
|
|
input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
)
|
|
|
|
|
|
|
|
if input_ids is not None:
|
|
|
|
batch_size = input_ids.shape[0]
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
else:
|
|
|
|
batch_size = hidden_states.shape[0]
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
logits = self.score(hidden_states)
|
|
|
|
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
if self.config.pad_token_id is None:
|
|
|
|
sequence_lengths = -1
|
|
|
|
else:
|
|
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
|
|
|
else:
|
|
|
|
sequence_lengths = -1
|
|
|
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
labels = labels.to(logits.device)
|
|
|
|
if self.config.problem_type is None:
|
|
|
|
if self.num_labels == 1:
|
|
|
|
self.config.problem_type = "regression"
|
|
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
self.config.problem_type = "single_label_classification"
|
|
|
|
else:
|
|
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
|
|
|
|
if self.config.problem_type == "regression":
|
|
|
|
loss_fct = MSELoss()
|
|
|
|
if self.num_labels == 1:
|
|
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
|
|
else:
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
elif self.config.problem_type == "single_label_classification":
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
|
|
loss_fct = BCEWithLogitsLoss()
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
if not return_dict:
|
|
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=pooled_logits,
|
|
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
hidden_states = transformer_outputs.get('hidden_states')
|
|
|
|
return {'hidden_states': hidden_states}
|
|
|
|
|
|
|
|
|
|
|
|
def get_llama_flash_attention_forward():
|
|
|
|
|
|
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
|
|
|
|
|
|
|
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self: LlamaAttention,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
use_cache: bool = False,
|
|
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
assert q_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
|
|
|
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
|
|
if past_key_value is not None:
|
|
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
# reuse k, v, self_attention
|
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
|
|
|
|
me_input_shape = (bsz, q_len, self.num_heads, self.head_dim)
|
|
|
|
query_states = query_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
|
|
|
key_states = key_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
|
|
|
value_states = value_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
|
|
|
|
|
|
|
flash_attention_mask = None
|
|
|
|
attn_mask_type = AttnMaskType.causal
|
|
|
|
if attention_mask != None:
|
|
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
|
|
raise ValueError(
|
|
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}")
|
|
|
|
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous()
|
|
|
|
attn_mask_type = AttnMaskType.paddedcausal
|
|
|
|
|
|
|
|
attention = ColoAttention(embed_dim=self.hidden_size, num_heads=self.num_heads)
|
|
|
|
attn_output = attention(query_states,
|
|
|
|
key_states,
|
|
|
|
value_states,
|
|
|
|
attn_mask=flash_attention_mask,
|
|
|
|
attn_mask_type=attn_mask_type)
|
|
|
|
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
|
|
return forward
|