mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] llama support DistCrossEntropy (#5176)
* fix aaa fix fix fix * fix * fix * test ci * fix ci fix * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * fix ci * fix ci --------- Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>pull/5183/head
parent
cefdc32615
commit
79718fae04
|
@ -78,10 +78,13 @@ class DistCrossEntropy(Function):
|
|||
# calculate the loss
|
||||
# loss = log(sum(exp(x[i]))) - x[class]
|
||||
loss = torch.where(target == ignore_index, 0.0, torch.log(sum_exp_logits) - pred_logits)
|
||||
loss = torch.sum(loss).div_(torch.sum(loss != 0.0))
|
||||
num_non_zero = torch.sum(loss != 0.0)
|
||||
ctx.inv_num_non_zero = 1.0 / num_non_zero
|
||||
loss = torch.sum(loss).div_(num_non_zero)
|
||||
|
||||
# calculate the softmax
|
||||
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
|
||||
exp_logits[target == ignore_index] = 0.0
|
||||
ctx.save_for_backward(exp_logits, mask, masked_target_1d)
|
||||
|
||||
return loss
|
||||
|
@ -89,6 +92,7 @@ class DistCrossEntropy(Function):
|
|||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
# retrieve the saved tensors
|
||||
grad_output = grad_output * ctx.inv_num_non_zero
|
||||
exp_logits, mask, masked_target_1d = ctx.saved_tensors
|
||||
|
||||
# use exp logits as the input grad
|
||||
|
@ -100,7 +104,7 @@ class DistCrossEntropy(Function):
|
|||
grad_logits_2d[torch.arange(0, grad_logits_2d.shape[0]), masked_target_1d] -= update
|
||||
|
||||
grad_logits.mul_(grad_output.unsqueeze(dim=-1))
|
||||
return grad_logits, None, None
|
||||
return grad_logits, None, None, None
|
||||
|
||||
|
||||
def cross_entropy_1d(
|
||||
|
|
|
@ -2,6 +2,8 @@ import warnings
|
|||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.distributed as dist
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
|
@ -12,6 +14,8 @@ from transformers.models.llama.modeling_llama import LlamaForCausalLM, LlamaForS
|
|||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from ..layer import cross_entropy_1d
|
||||
|
||||
try:
|
||||
from transformers.models.llama.modeling_llama import _prepare_4d_causal_attention_mask
|
||||
|
@ -40,6 +44,7 @@ class LlamaPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
):
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
@ -198,6 +203,7 @@ class LlamaPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
|
@ -267,11 +273,17 @@ class LlamaPipelineForwards:
|
|||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
if shard_config.enable_tensor_parallelism:
|
||||
new_vocab_size = logits.shape[-1]
|
||||
shift_logits = shift_logits.view(-1, new_vocab_size)
|
||||
loss = cross_entropy_1d(shift_logits, shift_labels, process_group=shard_config.tensor_parallel_process_group)
|
||||
else:
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
|
@ -304,6 +316,7 @@ class LlamaPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
|
@ -476,3 +489,106 @@ def get_llama_flash_attention_forward():
|
|||
return attn_output, None, past_key_value
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
||||
from transformers import LlamaForCausalLM
|
||||
|
||||
def forward(
|
||||
self: LlamaForCausalLM,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
||||
|
||||
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
||||
|
||||
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
||||
```"""
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if self.config.pretraining_tp > 1:
|
||||
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
||||
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
logits = torch.cat(logits, dim=-1)
|
||||
else:
|
||||
logits = self.lm_head(hidden_states)
|
||||
logits = logits.float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
if shard_config.enable_tensor_parallelism:
|
||||
new_vocab_size = logits.shape[-1]
|
||||
shift_logits = shift_logits.view(-1, new_vocab_size)
|
||||
loss = cross_entropy_1d(shift_logits, shift_labels, process_group=shard_config.tensor_parallel_process_group)
|
||||
else:
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
return forward
|
||||
|
|
|
@ -8,7 +8,7 @@ from torch.nn import Module
|
|||
|
||||
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col, Linear1D_Row, RMSNorm, VocabParallelEmbedding1D
|
||||
|
||||
from ..modeling.llama import LlamaPipelineForwards, get_llama_flash_attention_forward
|
||||
from ..modeling.llama import LlamaPipelineForwards, get_llama_flash_attention_forward, get_lm_forward_with_dist_cross_entropy
|
||||
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
__all__ = ["LlamaPolicy", "LlamaForCausalLMPolicy", "LlamaForSequenceClassificationPolicy"]
|
||||
|
@ -149,7 +149,7 @@ class LlamaPolicy(Policy):
|
|||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||||
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=model_cls
|
||||
)
|
||||
|
@ -212,9 +212,10 @@ class LlamaForCausalLMPolicy(LlamaPolicy):
|
|||
LlamaForCausalLM: ModulePolicyDescription(
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
|
||||
suffix="lm_head", target_module=Linear1D_Col
|
||||
)
|
||||
]
|
||||
],
|
||||
method_replacement={"forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)}
|
||||
)
|
||||
}
|
||||
policy.update(new_item)
|
||||
|
|
|
@ -17,23 +17,32 @@ def check_dist_crossentropy(rank, world_size, port, ignore_index):
|
|||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, port=port, host="localhost", backend="nccl")
|
||||
|
||||
# prepare data
|
||||
pred = torch.randn(2, 4, 8, requires_grad=True)
|
||||
labels = torch.randint(8, (2, 4))
|
||||
pred = torch.randn(2, 4, 8, requires_grad=True).cuda()
|
||||
labels = torch.randint(8, (2, 4)).cuda()
|
||||
# set some label to -100 to test the ignore index
|
||||
labels[0, -1] = ignore_index
|
||||
|
||||
org_pred = pred.view(-1, 8)
|
||||
org_labels = labels.view(-1)
|
||||
org_loss = F.cross_entropy(org_pred, org_labels)
|
||||
pred.retain_grad()
|
||||
org_loss.backward()
|
||||
|
||||
dist_pred = pred.chunk(world_size, -1)[rank]
|
||||
dist_loss = cross_entropy_1d(dist_pred.to("cuda"), labels.to("cuda"), ignore_index=ignore_index)
|
||||
dist_pred = pred.clone().chunk(world_size, -1)[rank].detach()
|
||||
dist_pred.requires_grad = True
|
||||
dist_loss = cross_entropy_1d(dist_pred, labels, ignore_index=ignore_index)
|
||||
dist_pred.retain_grad()
|
||||
dist_loss.backward()
|
||||
|
||||
assert torch.allclose(
|
||||
org_loss, dist_loss, atol=1e-5
|
||||
), f"dist cross entropy loss is not equal to orgin loss\n{org_loss}\n{dist_loss}"
|
||||
|
||||
|
||||
target_grad = torch.chunk(pred.grad, world_size, dim=-1)[rank]
|
||||
assert torch.allclose(target_grad, dist_pred.grad), f"dist grad is not equal to orgin grad\n{target_grad}\n{dist_pred.grad}"
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_dist_crossentropy():
|
||||
|
|
|
@ -207,7 +207,7 @@ def check_gptj_3d(rank, world_size, port):
|
|||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_gptj_3d_test()
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO check_gptj has something wrong.")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
|
|
Loading…
Reference in New Issue