You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/auto_parallel/tensor_shard/sharding_strategy.py

207 lines
7.9 KiB

from copy import deepcopy
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, List, Tuple, Union
import torch
from colossalai.tensor.shape_consistency import CommSpec
from colossalai.tensor.sharding_spec import ShardingSpec
from torch.fx.node import Node
from .constants import (BCAST_FUNC_OP, ELEMENTWISE_FUNC_OP, ELEMENTWISE_MODULE_OP, RESHAPE_FUNC_OP)
__all__ = ['OperationDataType', 'OperationData', 'TrainCycleItem', 'MemoryCost', 'ShardingStrategy', 'StrategiesVector']
class OperationDataType(Enum):
"""
An operation can come from the argument list of an operator or the parameter list of a module.
"""
INPUT = 0
ARG = 1
PARAM = 2
BUFFER = 3
OUTPUT = 4
@dataclass
class OperationData:
"""
OperationData is the data related to an operator, the data can be the operand or the output.
Args:
name (str): the name of the operation-related data
type (OperationDataType): the type of the operation data
data (Any): the value for this data, usually it is a meta tensor.
logical_shape (Tuple[int]): the logical shape of the data, it can be different from the its actual shape in memory.
"""
name: str
type: OperationDataType
data: Any
logical_shape: Tuple[int] = None
def __post_init__(self):
# if no logical shape is specified, use the data shape as the logical shape
if self.logical_shape is None and isinstance(self.data, torch.Tensor):
self.logical_shape = self.data.shape
def __repr__(self) -> str:
return f'OperationData(name={self.name}, type={self.type})'
def __eq__(self, other) -> bool:
return other.name == self.name
def __hash__(self) -> int:
return hash(f'{self.name}')
@dataclass
class TrainCycleItem:
"""
TrainCycleItem is a dataclass to store the items which have different values for the forward and backward pass
in a training iteration.
Args:
fwd (float): the item for the forward pass
bwd (float): the item for the backward pass
"""
fwd: Any
bwd: Any
total: Any
@dataclass
class MemoryCost:
"""
MemoryCost is a dataclass which stores the memory usage in the program.
Args:
activation (int): the memory cost incurred by the activations in bytes.
parameter (int): the memory cost incurred by the module parameter in bytes.
"""
activation: int = 0
parameter: int = 0
buffer: int = 0
@dataclass
class ShardingStrategy:
"""
ShardingStrategy is a dataclass to store the meta information on tensor sharding for a node.
Args:
name (str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
output_sharding_spec (ShardingSpec): ShardingSpec of the output node.
compute_cost (TrainCycleItem): Computation cost to complete this strategy. (default to None)
communication_cost (TrainCycleItem): Communication cost to complete this strategy. (default to None)
memory_cost (TrainCycleItem): Memory cost of the output node using this strategy. (default to None)
input_sharding_specs (List(ShardingSpec)): The ShardingSpecs of the input nodes.
"""
name: str
sharding_specs: Dict[OperationData, Union[ShardingSpec, Tuple[ShardingSpec]]] = None
compute_cost: TrainCycleItem = None
communication_cost: TrainCycleItem = None
memory_cost: TrainCycleItem = None
communication_actions: Dict[OperationData, CommSpec] = None
resharding_costs: Dict[Node, List[TrainCycleItem]] = None
@property
def input_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
specs = {}
specs.update(self._get_sharding_spec(OperationDataType.ARG))
specs.update(self._get_sharding_spec(OperationDataType.PARAM))
return specs
@property
def argument_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.ARG)
@property
def param_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.PARAM)
@property
def output_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.OUTPUT)
def _get_sharding_spec(self, operation_data_type: OperationDataType):
specs = {k: v for k, v in self.sharding_specs.items() if k.type == operation_data_type}
return specs
def get_op_data_by_name(self, name: str):
for op_data in self.sharding_specs.keys():
if op_data.name == name:
return op_data
raise KeyError(f"Could not find the OperationData with name {name}")
def get_sharding_spec_by_name(self, name: str):
for op_data, sharding_spec in self.sharding_specs.items():
if op_data.name == name:
return sharding_spec
raise KeyError(f"Could not find the ShardingSpec for OperationData with name {name}")
def clone(self):
def _deepcopy_dict_vals(data: Dict):
return {k: deepcopy(v) for k, v in data.items()}
sharding_specs = _deepcopy_dict_vals(self.sharding_specs) if self.sharding_specs else None
communication_actions = _deepcopy_dict_vals(self.communication_actions) if self.communication_actions else None
resharding_costs = _deepcopy_dict_vals(self.resharding_costs) if self.resharding_costs else None
compute_cost = deepcopy(self.compute_cost)
communication_cost = deepcopy(self.communication_cost)
memory_cost = deepcopy(self.memory_cost)
return ShardingStrategy(name=self.name,
sharding_specs=sharding_specs,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
communication_actions=communication_actions,
resharding_costs=resharding_costs)
class StrategiesVector(list):
'''
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node (Node): node for which the list of sharding strategies are generated.
'''
def __init__(self, node: Node):
super().__init__()
self.node = node
# fetch its input and output nodes
# TODO: placeholder input nodes
self.predecessor_nodes = list(node._input_nodes.keys())
if self.node.op == 'output':
self.predecessor_nodes = list(node._input_nodes.keys())[:1]
self.successor_nodes = list(node.users.keys())
def check_merge(self):
merge_label = False
if self.node.op == 'call_module':
target = self.node.target
root_module = self.node.graph.owning_module
submod = root_module.get_submodule(target)
submod_type = type(submod)
# merge elementwise module node into source nodes
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if submod_type in ELEMENTWISE_MODULE_OP:
merge_label = True
if self.node.op == 'call_function':
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if self.node.target in ELEMENTWISE_FUNC_OP:
merge_label = True
# we could merge bcast op if the rhs is a scalar, because it will fall back to the element-wise case.
if self.node.target in BCAST_FUNC_OP and len(self.predecessor_nodes) == 1:
merge_label = True
# we could merge reshape op, because the output sharding spec of reshape op is always fully replicated.
if self.node.target in RESHAPE_FUNC_OP:
merge_label = True
return merge_label