You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/checkpoint_io/general_checkpoint_io.py

139 lines
5.3 KiB

from pathlib import Path
import torch.nn as nn
from torch.optim import Optimizer
import logging
import os
import json
import gc
from typing import Optional
from .checkpoint_io_base import CheckpointIO
from .index_file import CheckpointIndexFile
from .utils import (
has_index_file,
load_state_dict,
save_state_dict,
is_safetensors_available,
shard_checkpoint,
load_shard_state_dict,
load_state_dict_into_model,
add_variant
)
from .utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, WEIGHTS_INDEX_NAME
__all__ = ['GeneralCheckpointIO']
class GeneralCheckpointIO(CheckpointIO):
"""
Checkpoint IO
"""
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool):
checkpoint = load_state_dict(checkpoint)
model.load_state_dict(checkpoint, strict=strict)
def save_unsharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
state_dict = model.state_dict()
# TODO(FrankLeeeee): add support for gather_dtensor
if gather_dtensor:
pass
# save the checkpoint
save_state_dict(state_dict, checkpoint, use_safetensors)
def load_sharded_optimizer(self, optimizer: Optimizer, checkpoint: Path, prefix: str, size_per_shard: int):
raise NotImplementedError("Sharded optimizer checkpoint is not supported yet.")
def load_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: Path):
checkpoint = load_state_dict(checkpoint)
optimizer.load_state_dict(checkpoint)
def save_sharded_optimizer(
self,
optimizer: Optimizer,
checkpoint: Path,
gather_dtensor: bool,
prefix: str,
size_per_shard: int,
):
raise NotImplementedError("Sharded optimizer checkpoint is not supported yet.")
def save_unsharded_optimizer(
self,
optimizer: Optimizer,
checkpoint: Path,
gather_dtensor: bool,
):
# TODO(FrankLeeeee): handle distributed tensors
save_state_dict(optimizer.state_dict(), checkpoint, use_safetensors=False)
def save_sharded_model(self, model: nn.Module, checkpoint_path: str, gather_dtensor:bool = False,
variant: Optional[str] = None, max_shard_size: int = 1024, use_safetensors: bool = False):
"""
implement this method as it can be supported by Huggingface model,
save shard model, save model to multiple files
"""
if os.path.isfile(checkpoint_path):
logging.error(f"Provided path ({checkpoint_path}) should be a directory, not a file")
return
Path(checkpoint_path).mkdir(parents=True, exist_ok=True)
# shard checkpoint
state_dict = model.state_dict()
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
weights_name = add_variant(weights_name, variant)
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
# Save the model
for shard_file, shard in shards.items():
checkpoint_file_path = os.path.join(checkpoint_path, shard_file)
save_state_dict(shard, checkpoint_file_path, use_safetensors)
# save index file
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME
save_index_file = os.path.join(checkpoint_path, add_variant(save_index_file, variant))
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
logging.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
def load_sharded_model(self, model: nn.Module, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False):
"""
load shard model, load model from multiple files
"""
use_safetensors = False
if "safetensors" in checkpoint_index_file.name:
use_safetensors = True
if use_safetensors and not is_safetensors_available():
raise ImportError("`safe_serialization` requires the `safetensors` library: `pip install safetensors`.")
# read checkpoint index file
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
checkpoint_files, _ = ckpt_index_file.get_checkpoint_fileanames()
missing_keys = ckpt_index_file.get_all_param_names()
for shard_file in checkpoint_files:
state_dict = load_shard_state_dict(Path(shard_file), use_safetensors)
load_state_dict_into_model(model, state_dict, missing_keys, strict)
del state_dict
gc.collect()
if strict and len(missing_keys) > 0:
error_msgs = 'Missing key(s) in state_dict: {}. '.format(
', '.join('"{}"'.format(k) for k in missing_keys))
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
self.__class__.__name__, "\n\t".join(error_msgs)))