mirror of https://github.com/hpcaitech/ColossalAI
[checkpoint] Shard saved checkpoint need to be compatible with the naming format of hf checkpoint files (#3479)
* [checkpoint] support huggingface style sharded checkpoint, to be compatible with hf file naming format * [checkpoint] support huggingface style sharded checkpoint, to be compatible with hf file naming format * [checkpoint] Shard saved checkpoint add 'variant' field to customize filename * [checkpoint] Shard saved checkpoint add 'variant' field to customize filename * [checkpoint] Shard saved checkpoint add 'variant' field to customize filename * [checkpoint] Shard saved checkpoint add 'variant' field to customize filename --------- Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local> Co-authored-by: luchen <luchen@luchendeMBP.lan>pull/3525/head
parent
7182ac2a04
commit
366a035552
|
@ -1,6 +1,7 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
@ -104,7 +105,7 @@ class CheckpointIO(ABC):
|
|||
checkpoint: str,
|
||||
shard: bool = False,
|
||||
gather_dtensor: bool = True,
|
||||
prefix: str = None,
|
||||
variant: str = None,
|
||||
size_per_shard: int = 1024,
|
||||
use_safetensors: bool = False):
|
||||
"""
|
||||
|
@ -129,7 +130,7 @@ class CheckpointIO(ABC):
|
|||
multiple files. The model shards will be specificed by a `model.index.json` file. When shard = True, please ensure
|
||||
that the checkpoint path is a directory path instead of a file path.
|
||||
gather_dtensor (bool): whether to gather the distributed tensor to the first device. Default: True.
|
||||
prefix (str): prefix for the model checkpoint file name when shard=True. Default: None.
|
||||
variant (str): If specified, weights are saved in the format pytorch_model.<variant>.bin. Default: None.
|
||||
size_per_shard (int): size per shard in MB. Default: 1024. This value is only used when shard = True.
|
||||
use_safetensors (bool): whether to use safe tensors. Default: False. If set to True, the checkpoint will be saved
|
||||
"""
|
||||
|
@ -138,7 +139,7 @@ class CheckpointIO(ABC):
|
|||
model = model.unwrap()
|
||||
|
||||
if shard:
|
||||
self.save_sharded_model(model, checkpoint, gather_dtensor, prefix, size_per_shard, use_safetensors)
|
||||
self.save_sharded_model(model, checkpoint, gather_dtensor, variant, size_per_shard, use_safetensors)
|
||||
else:
|
||||
self.save_unsharded_model(model, checkpoint, gather_dtensor, use_safetensors)
|
||||
|
||||
|
@ -219,7 +220,7 @@ class CheckpointIO(ABC):
|
|||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_sharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, prefix: str,
|
||||
def save_sharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, variant: Optional[str],
|
||||
size_per_shard: int, use_safetensors: bool):
|
||||
"""
|
||||
Save model to sharded checkpoint.
|
||||
|
|
|
@ -6,6 +6,7 @@ import logging
|
|||
import os
|
||||
import json
|
||||
import gc
|
||||
from typing import Optional
|
||||
|
||||
from .checkpoint_io_base import CheckpointIO
|
||||
from .index_file import CheckpointIndexFile
|
||||
|
@ -16,10 +17,12 @@ from .utils import (
|
|||
is_safetensors_available,
|
||||
shard_checkpoint,
|
||||
load_shard_state_dict,
|
||||
load_state_dict_into_model
|
||||
load_state_dict_into_model,
|
||||
add_variant
|
||||
)
|
||||
from .utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, WEIGHTS_INDEX_NAME
|
||||
|
||||
|
||||
__all__ = ['GeneralCheckpointIO']
|
||||
|
||||
|
||||
|
@ -69,7 +72,7 @@ class GeneralCheckpointIO(CheckpointIO):
|
|||
|
||||
|
||||
def save_sharded_model(self, model: nn.Module, checkpoint_path: str, gather_dtensor:bool = False,
|
||||
prefix: str = "", max_shard_size: int = 1024, use_safetensors: bool = False):
|
||||
variant: Optional[str] = None, max_shard_size: int = 1024, use_safetensors: bool = False):
|
||||
"""
|
||||
implement this method as it can be supported by Huggingface model,
|
||||
save shard model, save model to multiple files
|
||||
|
@ -83,6 +86,7 @@ class GeneralCheckpointIO(CheckpointIO):
|
|||
# shard checkpoint
|
||||
state_dict = model.state_dict()
|
||||
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
|
||||
weights_name = add_variant(weights_name, variant)
|
||||
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
|
||||
|
||||
# Save the model
|
||||
|
@ -92,7 +96,8 @@ class GeneralCheckpointIO(CheckpointIO):
|
|||
|
||||
# save index file
|
||||
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME
|
||||
save_index_file = os.path.join(checkpoint_path, save_index_file)
|
||||
|
||||
save_index_file = os.path.join(checkpoint_path, add_variant(save_index_file, variant))
|
||||
with open(save_index_file, "w", encoding="utf-8") as f:
|
||||
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
||||
f.write(content)
|
||||
|
|
|
@ -4,11 +4,12 @@ import torch
|
|||
import torch.nn as nn
|
||||
from typing import List, Dict, Mapping, OrderedDict, Optional, Tuple
|
||||
from colossalai.tensor.d_tensor.d_tensor import DTensor
|
||||
import re
|
||||
|
||||
SAFE_WEIGHTS_NAME = "model.safetensors"
|
||||
WEIGHTS_NAME = "model.bin"
|
||||
WEIGHTS_NAME = "pytorch_model.bin"
|
||||
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
|
||||
WEIGHTS_INDEX_NAME = "model.bin.index.json"
|
||||
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
|
||||
|
||||
# ======================================
|
||||
# General helper functions
|
||||
|
@ -27,7 +28,6 @@ def calculate_tensor_size(tensor: torch.Tensor) -> float:
|
|||
"""
|
||||
return tensor.numel() * tensor.element_size() / 1024 / 1024
|
||||
|
||||
|
||||
def is_safetensors_available() -> bool:
|
||||
"""
|
||||
Check whether safetensors is available.
|
||||
|
@ -358,13 +358,14 @@ def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]:
|
|||
checkpoint_path = Path(checkpoint_path)
|
||||
if checkpoint_path.is_file():
|
||||
# check if it is .index.json
|
||||
if checkpoint_path.name.endswith('.index.json'):
|
||||
reg = re.compile("(.*?).index((\..*)?).json")
|
||||
if reg.fullmatch(checkpoint_path.name) is not None:
|
||||
return True, checkpoint_path
|
||||
else:
|
||||
return False, None
|
||||
elif checkpoint_path.is_dir():
|
||||
# check if there is only one a file ending with .index.json in this directory
|
||||
index_files = list(checkpoint_path.glob('*.index.json'))
|
||||
index_files = list(checkpoint_path.glob('*.index.*json'))
|
||||
|
||||
# if we found a .index.json file, make sure there is only one
|
||||
if len(index_files) > 0:
|
||||
|
@ -406,3 +407,13 @@ def load_state_dict(checkpoint_file_path: Path):
|
|||
else:
|
||||
# load with torch
|
||||
return torch.load(checkpoint_file_path)
|
||||
|
||||
|
||||
|
||||
def add_variant(weights_name: str, variant: Optional[str] = None) -> str:
|
||||
if variant is not None and len(variant) > 0:
|
||||
splits = weights_name.split(".")
|
||||
splits = splits[:-1] + [variant] + splits[-1:]
|
||||
weights_name = ".".join(splits)
|
||||
|
||||
return weights_name
|
||||
|
|
Loading…
Reference in New Issue