You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/checkpoint_io/general_checkpoint_io.py

71 lines
2.7 KiB

from pathlib import Path
import torch.nn as nn
from torch.optim import Optimizer
from .checkpoint_io_base import CheckpointIO
from .index_file import CheckpointIndexFile
from .utils import has_index_file, load_state_dict, save_state_dict
__all__ = ['GeneralCheckpointIO']
class GeneralCheckpointIO(CheckpointIO):
def load_sharded_model(self, model: nn.Module, index_file_path: Path, strict: bool):
# load the index file
index_file = CheckpointIndexFile.from_file(index_file_path)
# iterate over the shard checkpoint files
# and load each
index_file.assert_no_dtensor_checkpoint()
checkpoint_file_list, _ = index_file.get_checkpoint_fileanames()
for shard_file in checkpoint_file_list:
shard_checkpoint = load_state_dict(shard_file)
model.load_state_dict(shard_checkpoint, strict=strict)
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool):
checkpoint = load_state_dict(checkpoint)
model.load_state_dict(checkpoint, strict=strict)
def save_sharded_model(self, model: nn.Module, checkpoint: Path, gather_dtensor: bool, prefix: str,
size_per_shard: int, use_safetensors: bool):
# TODO(FrankLeeeee): implement this method as it can be supported by Huggingface model
raise NotImplementedError("Sharded model checkpoint is not supported yet.")
def save_unsharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
state_dict = model.state_dict()
# TODO(FrankLeeeee): add support for gather_dtensor
if gather_dtensor:
pass
# save the checkpoint
save_state_dict(state_dict, checkpoint, use_safetensors)
def load_sharded_optimizer(self, optimizer: Optimizer, checkpoint: Path, prefix: str, size_per_shard: int):
raise NotImplementedError("Sharded optimizer checkpoint is not supported yet.")
def load_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: Path):
checkpoint = load_state_dict(checkpoint)
optimizer.load_state_dict(checkpoint)
def save_sharded_optimizer(
self,
optimizer: Optimizer,
checkpoint: Path,
gather_dtensor: bool,
prefix: str,
size_per_shard: int,
):
raise NotImplementedError("Sharded optimizer checkpoint is not supported yet.")
def save_unsharded_optimizer(
self,
optimizer: Optimizer,
checkpoint: Path,
gather_dtensor: bool,
):
# TODO(FrankLeeeee): handle distributed tensors
save_state_dict(optimizer.state_dict(), checkpoint, use_safetensors=False)