mirror of https://github.com/hpcaitech/ColossalAI
Browse Source
* add context attn unpadded triton kernel * test compatibility * kv cache copy (testing) * fix k/v cache copy * fix kv cache copy and test * fix boundary of block ptrs * add support for GQA/MQA and testing * fix import statement --------- Co-authored-by: Round Heng <yuanhengzhao@Rounds-MacBook-Pro.local>pull/5258/head
Yuanheng Zhao
11 months ago
committed by
FrankLeeeee
3 changed files with 422 additions and 0 deletions
@ -0,0 +1,262 @@
|
||||
# Applying the FlashAttention V2 as described in: |
||||
# "FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning" |
||||
# by Tri Dao, 2023 |
||||
# https://github.com/Dao-AILab/flash-attention |
||||
# |
||||
# Inspired and modified from Triton Tutorial - Fused Attention |
||||
# https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html |
||||
import torch |
||||
import triton |
||||
import triton.language as tl |
||||
|
||||
|
||||
# Triton 2.1.0 |
||||
@triton.jit |
||||
def _fwd_context_paged_attention_kernel( |
||||
Q, |
||||
K, |
||||
V, |
||||
O, |
||||
KCache, |
||||
VCache, |
||||
BLOCK_TABLES, # [num_seqs, max_blocks_per_sequence] |
||||
stride_qt, |
||||
stride_qh, |
||||
stride_qd, |
||||
stride_kt, |
||||
stride_kh, |
||||
stride_kd, |
||||
stride_vt, |
||||
stride_vh, |
||||
stride_vd, |
||||
stride_ot, |
||||
stride_oh, |
||||
stride_od, |
||||
stride_cacheb, |
||||
stride_cacheh, |
||||
stride_cached, |
||||
stride_cachebs, |
||||
stride_bts, |
||||
stride_btb, |
||||
context_lengths, |
||||
sm_scale, |
||||
KV_GROUPS: tl.constexpr, |
||||
BLOCK_SIZE: tl.constexpr, |
||||
BLOCK_DMODEL: tl.constexpr, |
||||
BLOCK_M: tl.constexpr, |
||||
BLOCK_N: tl.constexpr, |
||||
): |
||||
cur_seq_idx = tl.program_id(0) |
||||
cur_head_idx = tl.program_id(1) |
||||
block_start_m = tl.program_id(2) # Br, max_input_len // Block_M |
||||
cur_kv_head_idx = cur_head_idx // KV_GROUPS |
||||
|
||||
# NOTE It requires BLOCK_M, BLOCK_N, and BLOCK_SIZE to be the same |
||||
tl.static_assert(BLOCK_M == BLOCK_N) |
||||
tl.static_assert(BLOCK_N == BLOCK_SIZE) |
||||
|
||||
# get the current sequence length from provided context lengths tensor |
||||
cur_seq_len = tl.load(context_lengths + cur_seq_idx) |
||||
# NOTE when talking to fused QKV and a nopadding context attention, |
||||
# we assume that the input Q/K/V is contiguous, and thus here `prev_seq_len_sum` |
||||
# could be considered as the start index of the current sequence. |
||||
# FIXME might want to explore better way to get the summation of prev seq lengths. |
||||
# `tl.sum(tensor[:end])` is invalid as tensor slice is not supported in triton. |
||||
prev_seq_len_sum = 0 |
||||
for i in range(0, cur_seq_idx): |
||||
prev_seq_len_sum += tl.load(context_lengths + i) |
||||
|
||||
q_offset = prev_seq_len_sum * stride_qt + cur_head_idx * stride_qh |
||||
kv_offset = prev_seq_len_sum * stride_kt + cur_kv_head_idx * stride_kh |
||||
Q_block_ptr = tl.make_block_ptr( |
||||
base=Q + q_offset, |
||||
shape=(cur_seq_len, BLOCK_DMODEL), |
||||
strides=(stride_qt, stride_qd), |
||||
offsets=(block_start_m * BLOCK_M, 0), |
||||
block_shape=(BLOCK_M, BLOCK_DMODEL), |
||||
order=(1, 0), |
||||
) |
||||
K_block_ptr = tl.make_block_ptr( |
||||
base=K + kv_offset, |
||||
shape=(BLOCK_DMODEL, cur_seq_len), |
||||
strides=(stride_kd, stride_kt), |
||||
offsets=(0, 0), |
||||
block_shape=(BLOCK_DMODEL, BLOCK_N), |
||||
order=(0, 1), |
||||
) |
||||
V_block_ptr = tl.make_block_ptr( |
||||
base=V + kv_offset, |
||||
shape=(cur_seq_len, BLOCK_DMODEL), |
||||
strides=(stride_vt, stride_vd), |
||||
offsets=(0, 0), |
||||
block_shape=(BLOCK_N, BLOCK_DMODEL), |
||||
order=(1, 0), |
||||
) |
||||
O_block_ptr = tl.make_block_ptr( |
||||
base=O + q_offset, |
||||
shape=(cur_seq_len, BLOCK_DMODEL), |
||||
strides=(stride_ot, stride_od), |
||||
offsets=(block_start_m * BLOCK_M, 0), |
||||
block_shape=(BLOCK_M, BLOCK_DMODEL), |
||||
order=(1, 0), |
||||
) |
||||
|
||||
# block table for the current sequence |
||||
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts |
||||
# block indexes on block table (i.e. 0, 1, 2, ..., max_blocks_per_seq) |
||||
# Consider `block_start_m` as the logical block idx in the current block table, |
||||
# as we have BLOCK_M the same size as the block size. |
||||
cur_block_table_idx = block_start_m |
||||
cur_block_id = tl.load(block_table_ptr + cur_block_table_idx * stride_btb) |
||||
kvcache_offset = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh |
||||
|
||||
offsets_m = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M) |
||||
offsets_n = tl.arange(0, BLOCK_N) |
||||
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32) |
||||
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) |
||||
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) |
||||
|
||||
if block_start_m * BLOCK_M >= cur_seq_len: |
||||
return |
||||
|
||||
Q_i = tl.load(Q_block_ptr, boundary_check=(1, 0)) |
||||
|
||||
for block_start_n in range(0, (block_start_m + 1) * BLOCK_M, BLOCK_N): |
||||
block_start_n = tl.multiple_of(block_start_n, BLOCK_N) |
||||
|
||||
k = tl.load(K_block_ptr, boundary_check=(0, 1)) |
||||
S_ij = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) |
||||
S_ij += tl.dot(Q_i, k) |
||||
S_ij *= sm_scale |
||||
S_ij += tl.where(offsets_m[:, None] >= (block_start_n + offsets_n[None, :]), 0, float("-inf")) |
||||
|
||||
m_ij = tl.max(S_ij, 1) # rowmax(Sij) |
||||
m_ij = tl.maximum(m_i, m_ij) # m_ij |
||||
S_ij -= m_ij[:, None] |
||||
p_ij_hat = tl.exp(S_ij) |
||||
scale = tl.exp(m_i - m_ij) |
||||
l_ij = scale * l_i + tl.sum(p_ij_hat, 1) |
||||
acc = acc * scale[:, None] |
||||
|
||||
v = tl.load(V_block_ptr, boundary_check=(1, 0)) |
||||
p_ij_hat = p_ij_hat.to(v.type.element_ty) |
||||
|
||||
acc += tl.dot(p_ij_hat, v) |
||||
l_i = l_ij |
||||
m_i = m_ij |
||||
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) |
||||
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) |
||||
|
||||
acc = acc / l_i[:, None] |
||||
tl.store(O_block_ptr, acc.to(O.type.element_ty), boundary_check=(1, 0)) |
||||
|
||||
if cur_head_idx % KV_GROUPS == 0: |
||||
# Copy k to corresponding cache block |
||||
kd_offsets = tl.arange(0, BLOCK_DMODEL) |
||||
kt_offsets = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M) |
||||
k_offsets = K + kv_offset + kd_offsets[:, None] * stride_kd + kt_offsets[None, :] * stride_kt |
||||
k = tl.load(k_offsets, mask=kt_offsets[None, :] < cur_seq_len, other=0.0) |
||||
kcached_offsets = tl.arange(0, BLOCK_DMODEL) |
||||
kcachebs_offsets = tl.arange(0, BLOCK_SIZE) |
||||
kcache_offsets = ( |
||||
KCache |
||||
+ kvcache_offset |
||||
+ kcached_offsets[:, None] * stride_cached |
||||
+ kcachebs_offsets[None, :] * stride_cachebs |
||||
) |
||||
tl.store(kcache_offsets, k, mask=kcachebs_offsets[None, :] < cur_seq_len - block_start_m * BLOCK_SIZE) |
||||
# Copy v to corresponding cache block |
||||
vd_offsets = kd_offsets |
||||
vt_offsets = block_start_m * BLOCK_N + tl.arange(0, BLOCK_N) |
||||
v_offsets = V + kv_offset + vt_offsets[:, None] * stride_vt + vd_offsets[None, :] * stride_vd |
||||
v = tl.load(v_offsets, mask=vt_offsets[:, None] < cur_seq_len, other=0.0) |
||||
vcached_offsets = kcached_offsets |
||||
vcachebs_offsets = kcachebs_offsets |
||||
vcache_offsets = ( |
||||
VCache |
||||
+ kvcache_offset |
||||
+ vcachebs_offsets[:, None] * stride_cachebs |
||||
+ vcached_offsets[None, :] * stride_cached |
||||
) |
||||
tl.store(vcache_offsets, v, mask=vcachebs_offsets[:, None] < cur_seq_len - block_start_m * BLOCK_SIZE) |
||||
|
||||
return |
||||
|
||||
|
||||
def context_attention_unpadded( |
||||
q: torch.Tensor, # [num_tokens, num_heads, head_size] |
||||
k: torch.Tensor, # [num_tokens, num_kv_heads, head_size] |
||||
v: torch.Tensor, # [num_tokens, num_kv_heads, head_size] |
||||
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_size, block_size] |
||||
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_size, block_size] |
||||
context_lengths: torch.Tensor, # [num_seqs] |
||||
block_tables: torch.Tensor, # [num_seqs, max_blocks_per_sequence], |
||||
block_size: int, |
||||
): |
||||
# q/k in context stage are supposed to be put into k_cache and v_cache. |
||||
# This step can be optimized in future. |
||||
q = q.contiguous() |
||||
k = k.contiguous() |
||||
v = v.contiguous() |
||||
|
||||
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] |
||||
assert Lq == Lk == Lv |
||||
assert Lk in {32, 64, 128, 256} |
||||
assert q.shape[0] == k.shape[0] == v.shape[0] |
||||
assert k_cache.shape == v_cache.shape |
||||
assert context_lengths.shape[0] == block_tables.shape[0] |
||||
|
||||
num_tokens, num_heads, _ = q.shape |
||||
num_kv_heads = k.shape[-2] |
||||
assert num_kv_heads > 0 and num_heads % num_kv_heads == 0 |
||||
num_kv_group = num_heads // num_kv_heads |
||||
|
||||
num_seqs, max_blocks_per_seq = block_tables.shape |
||||
max_seq_len = context_lengths.max().item() |
||||
sm_scale = 1.0 / (Lq**0.5) |
||||
|
||||
output = torch.zeros_like(q) |
||||
|
||||
# NOTE For now, BLOCK_M and BLOCK_N are supposed to be equivalent with |
||||
# the size of physical cache block (i.e. `block_size`) |
||||
assert block_size in {16, 32, 64, 128} |
||||
BLOCK_M = BLOCK_N = block_size |
||||
|
||||
grid = (num_seqs, num_heads, triton.cdiv(max_seq_len, BLOCK_M)) |
||||
|
||||
_fwd_context_paged_attention_kernel[grid]( |
||||
q, |
||||
k, |
||||
v, |
||||
output, |
||||
k_cache, |
||||
v_cache, |
||||
block_tables, |
||||
q.stride(0), |
||||
q.stride(1), |
||||
q.stride(2), |
||||
k.stride(0), |
||||
k.stride(1), |
||||
k.stride(2), |
||||
v.stride(0), |
||||
v.stride(1), |
||||
v.stride(2), |
||||
output.stride(0), |
||||
output.stride(1), |
||||
output.stride(2), |
||||
k_cache.stride(0), |
||||
k_cache.stride(1), |
||||
k_cache.stride(2), |
||||
k_cache.stride(3), |
||||
block_tables.stride(0), |
||||
block_tables.stride(1), |
||||
context_lengths, |
||||
sm_scale, |
||||
num_kv_group, |
||||
block_size, |
||||
BLOCK_DMODEL=Lk, |
||||
BLOCK_M=BLOCK_M, |
||||
BLOCK_N=BLOCK_N, |
||||
) |
||||
|
||||
return output |
@ -0,0 +1,158 @@
|
||||
import pytest |
||||
import torch |
||||
import torch.nn.functional as F |
||||
from packaging import version |
||||
|
||||
from colossalai.kernel.triton import context_attention_unpadded |
||||
from colossalai.utils import get_current_device |
||||
|
||||
try: |
||||
import triton # noqa |
||||
|
||||
HAS_TRITON = True |
||||
except ImportError: |
||||
HAS_TRITON = False |
||||
print("please install triton from https://github.com/openai/triton") |
||||
|
||||
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") |
||||
|
||||
|
||||
def torch_attn_ref(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, seq_len: int, num_heads: int, head_size: int): |
||||
# For a single sequence, q,k,v [seq_len, num_heads, head_size] |
||||
assert q.shape[-1] == k.shape[-1] == v.shape[-1] == head_size |
||||
q = q.view(seq_len, num_heads, head_size) |
||||
k = k.view(seq_len, num_heads, head_size) |
||||
v = v.view(seq_len, num_heads, head_size) |
||||
q = q.transpose(0, 1) |
||||
k = k.transpose(0, 1) |
||||
v = v.transpose(0, 1) |
||||
|
||||
mask = torch.tril(torch.ones(1, seq_len, seq_len), diagonal=0).to(device=get_current_device()) |
||||
mask[mask == 0.0] = float("-inf") |
||||
mask = mask.repeat(num_heads, 1, 1) |
||||
|
||||
qk = torch.matmul(q, k.transpose(1, 2)) |
||||
attn_scores = qk / (head_size**0.5) |
||||
attn_weights = F.softmax(attn_scores.to(dtype=torch.float32) + mask, dim=-1).to(dtype=q.dtype) |
||||
out = torch.matmul(attn_weights, v).transpose(0, 1).contiguous() |
||||
out = out.reshape(-1, num_heads, head_size) |
||||
return out |
||||
|
||||
|
||||
def torch_attn_unpad(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, context_lengths: torch.Tensor): |
||||
# Process sequence one by one and cat them together. |
||||
# q,k,v [num_tokens(sum(context_lengths)), num_heads, head_size] |
||||
assert context_lengths.dim() == 1, "context_lengths should be a 1D tensor" |
||||
_, num_heads, head_size = q.shape |
||||
out_torch = [] |
||||
start_idx = 0 |
||||
for i in range(len(context_lengths)): |
||||
end_idx = start_idx + context_lengths[i].item() |
||||
torch_attn_ref_out = torch_attn_ref( |
||||
q[start_idx:end_idx], k[start_idx:end_idx], v[start_idx:end_idx], end_idx - start_idx, num_heads, head_size |
||||
) |
||||
out_torch.append(torch_attn_ref_out) |
||||
start_idx = end_idx |
||||
return torch.cat(out_torch, dim=0) |
||||
|
||||
|
||||
# This method is adapted from src/transformers/models/llama/modeling_llama.py |
||||
# in transformers repository https://github.com/huggingface/transformers |
||||
# https://github.com/huggingface/transformers/blob/3b7675b2b844b02d4821b827871a21ad16dd446c/src/transformers/models/llama/modeling_llama.py#L273 |
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
||||
""" |
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (num_tokens, |
||||
num_key_value_heads, head_dim) to (num_tokens, num_attention_heads, head_dim) |
||||
""" |
||||
num_tokens, num_key_value_heads, head_dim = hidden_states.shape |
||||
if n_rep == 1: |
||||
return hidden_states |
||||
hidden_states = hidden_states[:, :, None, :].expand(num_tokens, num_key_value_heads, n_rep, head_dim) |
||||
return hidden_states.reshape(num_tokens, num_key_value_heads * n_rep, head_dim) |
||||
|
||||
|
||||
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton") |
||||
@pytest.mark.parametrize("bsz", [4, 7, 32]) |
||||
@pytest.mark.parametrize("block_size", [16, 32, 64]) |
||||
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32]) |
||||
@pytest.mark.parametrize("num_attn_heads", [16]) |
||||
@pytest.mark.parametrize("kv_group_num", [1, 2, 16]) |
||||
@pytest.mark.parametrize("same_context_len", [True, False]) |
||||
def test_context_attention( |
||||
bsz: int, |
||||
block_size: int, |
||||
max_num_blocks_per_seq: int, |
||||
num_attn_heads: int, |
||||
kv_group_num: int, |
||||
same_context_len: bool, |
||||
): |
||||
torch.manual_seed(123) |
||||
|
||||
dtype = torch.float16 |
||||
device = get_current_device() |
||||
num_seqs = bsz |
||||
num_kv_heads = num_attn_heads // kv_group_num |
||||
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads." |
||||
head_size = 32 |
||||
max_seq_len = max_num_blocks_per_seq * block_size |
||||
|
||||
# It's necessary to clear cache here. |
||||
torch.cuda.empty_cache() |
||||
torch.cuda.synchronize() |
||||
torch.cuda.reset_peak_memory_stats() |
||||
|
||||
if same_context_len: |
||||
context_lengths = torch.tensor([max_seq_len for _ in range(num_seqs)], dtype=torch.int32, device=device) |
||||
else: |
||||
context_lengths = torch.randint(low=1, high=max_seq_len, size=(num_seqs,), dtype=torch.int32, device=device) |
||||
num_tokens = torch.sum(context_lengths).item() |
||||
|
||||
qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, head_size) |
||||
qkv = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5) |
||||
q, k, v = torch.split(qkv, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2) |
||||
|
||||
cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_size, block_size) |
||||
k_cache_torch = torch.zeros(size=cache_shape, dtype=dtype, device=device) |
||||
k_cache_triton = torch.zeros_like(k_cache_torch) |
||||
v_cache_torch = torch.zeros(size=cache_shape, dtype=dtype, device=device) |
||||
v_cache_triton = torch.zeros_like(v_cache_torch) |
||||
|
||||
# Mock allocation on block tables |
||||
block_id = 0 |
||||
block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32) |
||||
num_tokens_processed = 0 |
||||
for i, seq_len in enumerate(context_lengths.tolist()): |
||||
right_bound = (seq_len + block_size - 1) // block_size # open bound |
||||
block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32) |
||||
# Manually fill k_cache_torch and v_cache_torch by copying from k and v |
||||
for i in range(right_bound): |
||||
if i == right_bound - 1: |
||||
allocated_locs = seq_len % block_size or block_size |
||||
else: |
||||
allocated_locs = block_size |
||||
k_block = k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0) |
||||
v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0) |
||||
cur_block_size_occupied = k_block.shape[-1] |
||||
assert cur_block_size_occupied <= block_size, "Invalid occupied size of block during mock allocation" |
||||
k_cache_torch[block_id, :, :, :cur_block_size_occupied] = k_block |
||||
v_cache_torch[block_id, :, :, :cur_block_size_occupied] = v_block |
||||
|
||||
num_tokens_processed += allocated_locs |
||||
block_id += 1 |
||||
|
||||
block_tables = block_tables.to(device=device) |
||||
out_triton = context_attention_unpadded( |
||||
q, k, v, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size |
||||
) |
||||
|
||||
# For GQA and MQA, repeat k, v for torch attention calculation |
||||
# k/v won't change if provided `num_kv_group` is 1 |
||||
num_kv_group = num_attn_heads // num_kv_heads |
||||
k = repeat_kv(k, num_kv_group) |
||||
v = repeat_kv(v, num_kv_group) |
||||
out_torch = torch_attn_unpad(q, k, v, context_lengths) |
||||
|
||||
assert out_torch.shape == out_triton.shape |
||||
assert torch.allclose(out_torch, out_triton, atol=1e-2, rtol=1e-3) |
||||
assert torch.allclose(k_cache_torch, k_cache_triton) |
||||
assert torch.allclose(v_cache_torch, v_cache_triton) |
Loading…
Reference in new issue