mirror of https://github.com/hpcaitech/ColossalAI
[kernel] Add triton kernel for context attention (FAv2) without padding (#5192)
* add context attn unpadded triton kernel * test compatibility * kv cache copy (testing) * fix k/v cache copy * fix kv cache copy and test * fix boundary of block ptrs * add support for GQA/MQA and testing * fix import statement --------- Co-authored-by: Round Heng <yuanhengzhao@Rounds-MacBook-Pro.local>pull/5258/head
parent
4df8876fca
commit
07b5283b6a
@ -0,0 +1,262 @@
|
|||||||
|
# Applying the FlashAttention V2 as described in:
|
||||||
|
# "FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning"
|
||||||
|
# by Tri Dao, 2023
|
||||||
|
# https://github.com/Dao-AILab/flash-attention
|
||||||
|
#
|
||||||
|
# Inspired and modified from Triton Tutorial - Fused Attention
|
||||||
|
# https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
|
||||||
|
import torch
|
||||||
|
import triton
|
||||||
|
import triton.language as tl
|
||||||
|
|
||||||
|
|
||||||
|
# Triton 2.1.0
|
||||||
|
@triton.jit
|
||||||
|
def _fwd_context_paged_attention_kernel(
|
||||||
|
Q,
|
||||||
|
K,
|
||||||
|
V,
|
||||||
|
O,
|
||||||
|
KCache,
|
||||||
|
VCache,
|
||||||
|
BLOCK_TABLES, # [num_seqs, max_blocks_per_sequence]
|
||||||
|
stride_qt,
|
||||||
|
stride_qh,
|
||||||
|
stride_qd,
|
||||||
|
stride_kt,
|
||||||
|
stride_kh,
|
||||||
|
stride_kd,
|
||||||
|
stride_vt,
|
||||||
|
stride_vh,
|
||||||
|
stride_vd,
|
||||||
|
stride_ot,
|
||||||
|
stride_oh,
|
||||||
|
stride_od,
|
||||||
|
stride_cacheb,
|
||||||
|
stride_cacheh,
|
||||||
|
stride_cached,
|
||||||
|
stride_cachebs,
|
||||||
|
stride_bts,
|
||||||
|
stride_btb,
|
||||||
|
context_lengths,
|
||||||
|
sm_scale,
|
||||||
|
KV_GROUPS: tl.constexpr,
|
||||||
|
BLOCK_SIZE: tl.constexpr,
|
||||||
|
BLOCK_DMODEL: tl.constexpr,
|
||||||
|
BLOCK_M: tl.constexpr,
|
||||||
|
BLOCK_N: tl.constexpr,
|
||||||
|
):
|
||||||
|
cur_seq_idx = tl.program_id(0)
|
||||||
|
cur_head_idx = tl.program_id(1)
|
||||||
|
block_start_m = tl.program_id(2) # Br, max_input_len // Block_M
|
||||||
|
cur_kv_head_idx = cur_head_idx // KV_GROUPS
|
||||||
|
|
||||||
|
# NOTE It requires BLOCK_M, BLOCK_N, and BLOCK_SIZE to be the same
|
||||||
|
tl.static_assert(BLOCK_M == BLOCK_N)
|
||||||
|
tl.static_assert(BLOCK_N == BLOCK_SIZE)
|
||||||
|
|
||||||
|
# get the current sequence length from provided context lengths tensor
|
||||||
|
cur_seq_len = tl.load(context_lengths + cur_seq_idx)
|
||||||
|
# NOTE when talking to fused QKV and a nopadding context attention,
|
||||||
|
# we assume that the input Q/K/V is contiguous, and thus here `prev_seq_len_sum`
|
||||||
|
# could be considered as the start index of the current sequence.
|
||||||
|
# FIXME might want to explore better way to get the summation of prev seq lengths.
|
||||||
|
# `tl.sum(tensor[:end])` is invalid as tensor slice is not supported in triton.
|
||||||
|
prev_seq_len_sum = 0
|
||||||
|
for i in range(0, cur_seq_idx):
|
||||||
|
prev_seq_len_sum += tl.load(context_lengths + i)
|
||||||
|
|
||||||
|
q_offset = prev_seq_len_sum * stride_qt + cur_head_idx * stride_qh
|
||||||
|
kv_offset = prev_seq_len_sum * stride_kt + cur_kv_head_idx * stride_kh
|
||||||
|
Q_block_ptr = tl.make_block_ptr(
|
||||||
|
base=Q + q_offset,
|
||||||
|
shape=(cur_seq_len, BLOCK_DMODEL),
|
||||||
|
strides=(stride_qt, stride_qd),
|
||||||
|
offsets=(block_start_m * BLOCK_M, 0),
|
||||||
|
block_shape=(BLOCK_M, BLOCK_DMODEL),
|
||||||
|
order=(1, 0),
|
||||||
|
)
|
||||||
|
K_block_ptr = tl.make_block_ptr(
|
||||||
|
base=K + kv_offset,
|
||||||
|
shape=(BLOCK_DMODEL, cur_seq_len),
|
||||||
|
strides=(stride_kd, stride_kt),
|
||||||
|
offsets=(0, 0),
|
||||||
|
block_shape=(BLOCK_DMODEL, BLOCK_N),
|
||||||
|
order=(0, 1),
|
||||||
|
)
|
||||||
|
V_block_ptr = tl.make_block_ptr(
|
||||||
|
base=V + kv_offset,
|
||||||
|
shape=(cur_seq_len, BLOCK_DMODEL),
|
||||||
|
strides=(stride_vt, stride_vd),
|
||||||
|
offsets=(0, 0),
|
||||||
|
block_shape=(BLOCK_N, BLOCK_DMODEL),
|
||||||
|
order=(1, 0),
|
||||||
|
)
|
||||||
|
O_block_ptr = tl.make_block_ptr(
|
||||||
|
base=O + q_offset,
|
||||||
|
shape=(cur_seq_len, BLOCK_DMODEL),
|
||||||
|
strides=(stride_ot, stride_od),
|
||||||
|
offsets=(block_start_m * BLOCK_M, 0),
|
||||||
|
block_shape=(BLOCK_M, BLOCK_DMODEL),
|
||||||
|
order=(1, 0),
|
||||||
|
)
|
||||||
|
|
||||||
|
# block table for the current sequence
|
||||||
|
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
|
||||||
|
# block indexes on block table (i.e. 0, 1, 2, ..., max_blocks_per_seq)
|
||||||
|
# Consider `block_start_m` as the logical block idx in the current block table,
|
||||||
|
# as we have BLOCK_M the same size as the block size.
|
||||||
|
cur_block_table_idx = block_start_m
|
||||||
|
cur_block_id = tl.load(block_table_ptr + cur_block_table_idx * stride_btb)
|
||||||
|
kvcache_offset = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh
|
||||||
|
|
||||||
|
offsets_m = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
||||||
|
offsets_n = tl.arange(0, BLOCK_N)
|
||||||
|
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
|
||||||
|
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
||||||
|
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
||||||
|
|
||||||
|
if block_start_m * BLOCK_M >= cur_seq_len:
|
||||||
|
return
|
||||||
|
|
||||||
|
Q_i = tl.load(Q_block_ptr, boundary_check=(1, 0))
|
||||||
|
|
||||||
|
for block_start_n in range(0, (block_start_m + 1) * BLOCK_M, BLOCK_N):
|
||||||
|
block_start_n = tl.multiple_of(block_start_n, BLOCK_N)
|
||||||
|
|
||||||
|
k = tl.load(K_block_ptr, boundary_check=(0, 1))
|
||||||
|
S_ij = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
||||||
|
S_ij += tl.dot(Q_i, k)
|
||||||
|
S_ij *= sm_scale
|
||||||
|
S_ij += tl.where(offsets_m[:, None] >= (block_start_n + offsets_n[None, :]), 0, float("-inf"))
|
||||||
|
|
||||||
|
m_ij = tl.max(S_ij, 1) # rowmax(Sij)
|
||||||
|
m_ij = tl.maximum(m_i, m_ij) # m_ij
|
||||||
|
S_ij -= m_ij[:, None]
|
||||||
|
p_ij_hat = tl.exp(S_ij)
|
||||||
|
scale = tl.exp(m_i - m_ij)
|
||||||
|
l_ij = scale * l_i + tl.sum(p_ij_hat, 1)
|
||||||
|
acc = acc * scale[:, None]
|
||||||
|
|
||||||
|
v = tl.load(V_block_ptr, boundary_check=(1, 0))
|
||||||
|
p_ij_hat = p_ij_hat.to(v.type.element_ty)
|
||||||
|
|
||||||
|
acc += tl.dot(p_ij_hat, v)
|
||||||
|
l_i = l_ij
|
||||||
|
m_i = m_ij
|
||||||
|
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
||||||
|
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
||||||
|
|
||||||
|
acc = acc / l_i[:, None]
|
||||||
|
tl.store(O_block_ptr, acc.to(O.type.element_ty), boundary_check=(1, 0))
|
||||||
|
|
||||||
|
if cur_head_idx % KV_GROUPS == 0:
|
||||||
|
# Copy k to corresponding cache block
|
||||||
|
kd_offsets = tl.arange(0, BLOCK_DMODEL)
|
||||||
|
kt_offsets = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
||||||
|
k_offsets = K + kv_offset + kd_offsets[:, None] * stride_kd + kt_offsets[None, :] * stride_kt
|
||||||
|
k = tl.load(k_offsets, mask=kt_offsets[None, :] < cur_seq_len, other=0.0)
|
||||||
|
kcached_offsets = tl.arange(0, BLOCK_DMODEL)
|
||||||
|
kcachebs_offsets = tl.arange(0, BLOCK_SIZE)
|
||||||
|
kcache_offsets = (
|
||||||
|
KCache
|
||||||
|
+ kvcache_offset
|
||||||
|
+ kcached_offsets[:, None] * stride_cached
|
||||||
|
+ kcachebs_offsets[None, :] * stride_cachebs
|
||||||
|
)
|
||||||
|
tl.store(kcache_offsets, k, mask=kcachebs_offsets[None, :] < cur_seq_len - block_start_m * BLOCK_SIZE)
|
||||||
|
# Copy v to corresponding cache block
|
||||||
|
vd_offsets = kd_offsets
|
||||||
|
vt_offsets = block_start_m * BLOCK_N + tl.arange(0, BLOCK_N)
|
||||||
|
v_offsets = V + kv_offset + vt_offsets[:, None] * stride_vt + vd_offsets[None, :] * stride_vd
|
||||||
|
v = tl.load(v_offsets, mask=vt_offsets[:, None] < cur_seq_len, other=0.0)
|
||||||
|
vcached_offsets = kcached_offsets
|
||||||
|
vcachebs_offsets = kcachebs_offsets
|
||||||
|
vcache_offsets = (
|
||||||
|
VCache
|
||||||
|
+ kvcache_offset
|
||||||
|
+ vcachebs_offsets[:, None] * stride_cachebs
|
||||||
|
+ vcached_offsets[None, :] * stride_cached
|
||||||
|
)
|
||||||
|
tl.store(vcache_offsets, v, mask=vcachebs_offsets[:, None] < cur_seq_len - block_start_m * BLOCK_SIZE)
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def context_attention_unpadded(
|
||||||
|
q: torch.Tensor, # [num_tokens, num_heads, head_size]
|
||||||
|
k: torch.Tensor, # [num_tokens, num_kv_heads, head_size]
|
||||||
|
v: torch.Tensor, # [num_tokens, num_kv_heads, head_size]
|
||||||
|
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_size, block_size]
|
||||||
|
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_size, block_size]
|
||||||
|
context_lengths: torch.Tensor, # [num_seqs]
|
||||||
|
block_tables: torch.Tensor, # [num_seqs, max_blocks_per_sequence],
|
||||||
|
block_size: int,
|
||||||
|
):
|
||||||
|
# q/k in context stage are supposed to be put into k_cache and v_cache.
|
||||||
|
# This step can be optimized in future.
|
||||||
|
q = q.contiguous()
|
||||||
|
k = k.contiguous()
|
||||||
|
v = v.contiguous()
|
||||||
|
|
||||||
|
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
||||||
|
assert Lq == Lk == Lv
|
||||||
|
assert Lk in {32, 64, 128, 256}
|
||||||
|
assert q.shape[0] == k.shape[0] == v.shape[0]
|
||||||
|
assert k_cache.shape == v_cache.shape
|
||||||
|
assert context_lengths.shape[0] == block_tables.shape[0]
|
||||||
|
|
||||||
|
num_tokens, num_heads, _ = q.shape
|
||||||
|
num_kv_heads = k.shape[-2]
|
||||||
|
assert num_kv_heads > 0 and num_heads % num_kv_heads == 0
|
||||||
|
num_kv_group = num_heads // num_kv_heads
|
||||||
|
|
||||||
|
num_seqs, max_blocks_per_seq = block_tables.shape
|
||||||
|
max_seq_len = context_lengths.max().item()
|
||||||
|
sm_scale = 1.0 / (Lq**0.5)
|
||||||
|
|
||||||
|
output = torch.zeros_like(q)
|
||||||
|
|
||||||
|
# NOTE For now, BLOCK_M and BLOCK_N are supposed to be equivalent with
|
||||||
|
# the size of physical cache block (i.e. `block_size`)
|
||||||
|
assert block_size in {16, 32, 64, 128}
|
||||||
|
BLOCK_M = BLOCK_N = block_size
|
||||||
|
|
||||||
|
grid = (num_seqs, num_heads, triton.cdiv(max_seq_len, BLOCK_M))
|
||||||
|
|
||||||
|
_fwd_context_paged_attention_kernel[grid](
|
||||||
|
q,
|
||||||
|
k,
|
||||||
|
v,
|
||||||
|
output,
|
||||||
|
k_cache,
|
||||||
|
v_cache,
|
||||||
|
block_tables,
|
||||||
|
q.stride(0),
|
||||||
|
q.stride(1),
|
||||||
|
q.stride(2),
|
||||||
|
k.stride(0),
|
||||||
|
k.stride(1),
|
||||||
|
k.stride(2),
|
||||||
|
v.stride(0),
|
||||||
|
v.stride(1),
|
||||||
|
v.stride(2),
|
||||||
|
output.stride(0),
|
||||||
|
output.stride(1),
|
||||||
|
output.stride(2),
|
||||||
|
k_cache.stride(0),
|
||||||
|
k_cache.stride(1),
|
||||||
|
k_cache.stride(2),
|
||||||
|
k_cache.stride(3),
|
||||||
|
block_tables.stride(0),
|
||||||
|
block_tables.stride(1),
|
||||||
|
context_lengths,
|
||||||
|
sm_scale,
|
||||||
|
num_kv_group,
|
||||||
|
block_size,
|
||||||
|
BLOCK_DMODEL=Lk,
|
||||||
|
BLOCK_M=BLOCK_M,
|
||||||
|
BLOCK_N=BLOCK_N,
|
||||||
|
)
|
||||||
|
|
||||||
|
return output
|
@ -0,0 +1,158 @@
|
|||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
|
from colossalai.kernel.triton import context_attention_unpadded
|
||||||
|
from colossalai.utils import get_current_device
|
||||||
|
|
||||||
|
try:
|
||||||
|
import triton # noqa
|
||||||
|
|
||||||
|
HAS_TRITON = True
|
||||||
|
except ImportError:
|
||||||
|
HAS_TRITON = False
|
||||||
|
print("please install triton from https://github.com/openai/triton")
|
||||||
|
|
||||||
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
||||||
|
|
||||||
|
|
||||||
|
def torch_attn_ref(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, seq_len: int, num_heads: int, head_size: int):
|
||||||
|
# For a single sequence, q,k,v [seq_len, num_heads, head_size]
|
||||||
|
assert q.shape[-1] == k.shape[-1] == v.shape[-1] == head_size
|
||||||
|
q = q.view(seq_len, num_heads, head_size)
|
||||||
|
k = k.view(seq_len, num_heads, head_size)
|
||||||
|
v = v.view(seq_len, num_heads, head_size)
|
||||||
|
q = q.transpose(0, 1)
|
||||||
|
k = k.transpose(0, 1)
|
||||||
|
v = v.transpose(0, 1)
|
||||||
|
|
||||||
|
mask = torch.tril(torch.ones(1, seq_len, seq_len), diagonal=0).to(device=get_current_device())
|
||||||
|
mask[mask == 0.0] = float("-inf")
|
||||||
|
mask = mask.repeat(num_heads, 1, 1)
|
||||||
|
|
||||||
|
qk = torch.matmul(q, k.transpose(1, 2))
|
||||||
|
attn_scores = qk / (head_size**0.5)
|
||||||
|
attn_weights = F.softmax(attn_scores.to(dtype=torch.float32) + mask, dim=-1).to(dtype=q.dtype)
|
||||||
|
out = torch.matmul(attn_weights, v).transpose(0, 1).contiguous()
|
||||||
|
out = out.reshape(-1, num_heads, head_size)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def torch_attn_unpad(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, context_lengths: torch.Tensor):
|
||||||
|
# Process sequence one by one and cat them together.
|
||||||
|
# q,k,v [num_tokens(sum(context_lengths)), num_heads, head_size]
|
||||||
|
assert context_lengths.dim() == 1, "context_lengths should be a 1D tensor"
|
||||||
|
_, num_heads, head_size = q.shape
|
||||||
|
out_torch = []
|
||||||
|
start_idx = 0
|
||||||
|
for i in range(len(context_lengths)):
|
||||||
|
end_idx = start_idx + context_lengths[i].item()
|
||||||
|
torch_attn_ref_out = torch_attn_ref(
|
||||||
|
q[start_idx:end_idx], k[start_idx:end_idx], v[start_idx:end_idx], end_idx - start_idx, num_heads, head_size
|
||||||
|
)
|
||||||
|
out_torch.append(torch_attn_ref_out)
|
||||||
|
start_idx = end_idx
|
||||||
|
return torch.cat(out_torch, dim=0)
|
||||||
|
|
||||||
|
|
||||||
|
# This method is adapted from src/transformers/models/llama/modeling_llama.py
|
||||||
|
# in transformers repository https://github.com/huggingface/transformers
|
||||||
|
# https://github.com/huggingface/transformers/blob/3b7675b2b844b02d4821b827871a21ad16dd446c/src/transformers/models/llama/modeling_llama.py#L273
|
||||||
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (num_tokens,
|
||||||
|
num_key_value_heads, head_dim) to (num_tokens, num_attention_heads, head_dim)
|
||||||
|
"""
|
||||||
|
num_tokens, num_key_value_heads, head_dim = hidden_states.shape
|
||||||
|
if n_rep == 1:
|
||||||
|
return hidden_states
|
||||||
|
hidden_states = hidden_states[:, :, None, :].expand(num_tokens, num_key_value_heads, n_rep, head_dim)
|
||||||
|
return hidden_states.reshape(num_tokens, num_key_value_heads * n_rep, head_dim)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
|
||||||
|
@pytest.mark.parametrize("bsz", [4, 7, 32])
|
||||||
|
@pytest.mark.parametrize("block_size", [16, 32, 64])
|
||||||
|
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32])
|
||||||
|
@pytest.mark.parametrize("num_attn_heads", [16])
|
||||||
|
@pytest.mark.parametrize("kv_group_num", [1, 2, 16])
|
||||||
|
@pytest.mark.parametrize("same_context_len", [True, False])
|
||||||
|
def test_context_attention(
|
||||||
|
bsz: int,
|
||||||
|
block_size: int,
|
||||||
|
max_num_blocks_per_seq: int,
|
||||||
|
num_attn_heads: int,
|
||||||
|
kv_group_num: int,
|
||||||
|
same_context_len: bool,
|
||||||
|
):
|
||||||
|
torch.manual_seed(123)
|
||||||
|
|
||||||
|
dtype = torch.float16
|
||||||
|
device = get_current_device()
|
||||||
|
num_seqs = bsz
|
||||||
|
num_kv_heads = num_attn_heads // kv_group_num
|
||||||
|
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
|
||||||
|
head_size = 32
|
||||||
|
max_seq_len = max_num_blocks_per_seq * block_size
|
||||||
|
|
||||||
|
# It's necessary to clear cache here.
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
|
||||||
|
if same_context_len:
|
||||||
|
context_lengths = torch.tensor([max_seq_len for _ in range(num_seqs)], dtype=torch.int32, device=device)
|
||||||
|
else:
|
||||||
|
context_lengths = torch.randint(low=1, high=max_seq_len, size=(num_seqs,), dtype=torch.int32, device=device)
|
||||||
|
num_tokens = torch.sum(context_lengths).item()
|
||||||
|
|
||||||
|
qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, head_size)
|
||||||
|
qkv = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
|
||||||
|
q, k, v = torch.split(qkv, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
|
||||||
|
|
||||||
|
cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_size, block_size)
|
||||||
|
k_cache_torch = torch.zeros(size=cache_shape, dtype=dtype, device=device)
|
||||||
|
k_cache_triton = torch.zeros_like(k_cache_torch)
|
||||||
|
v_cache_torch = torch.zeros(size=cache_shape, dtype=dtype, device=device)
|
||||||
|
v_cache_triton = torch.zeros_like(v_cache_torch)
|
||||||
|
|
||||||
|
# Mock allocation on block tables
|
||||||
|
block_id = 0
|
||||||
|
block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32)
|
||||||
|
num_tokens_processed = 0
|
||||||
|
for i, seq_len in enumerate(context_lengths.tolist()):
|
||||||
|
right_bound = (seq_len + block_size - 1) // block_size # open bound
|
||||||
|
block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32)
|
||||||
|
# Manually fill k_cache_torch and v_cache_torch by copying from k and v
|
||||||
|
for i in range(right_bound):
|
||||||
|
if i == right_bound - 1:
|
||||||
|
allocated_locs = seq_len % block_size or block_size
|
||||||
|
else:
|
||||||
|
allocated_locs = block_size
|
||||||
|
k_block = k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0)
|
||||||
|
v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0)
|
||||||
|
cur_block_size_occupied = k_block.shape[-1]
|
||||||
|
assert cur_block_size_occupied <= block_size, "Invalid occupied size of block during mock allocation"
|
||||||
|
k_cache_torch[block_id, :, :, :cur_block_size_occupied] = k_block
|
||||||
|
v_cache_torch[block_id, :, :, :cur_block_size_occupied] = v_block
|
||||||
|
|
||||||
|
num_tokens_processed += allocated_locs
|
||||||
|
block_id += 1
|
||||||
|
|
||||||
|
block_tables = block_tables.to(device=device)
|
||||||
|
out_triton = context_attention_unpadded(
|
||||||
|
q, k, v, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
|
||||||
|
)
|
||||||
|
|
||||||
|
# For GQA and MQA, repeat k, v for torch attention calculation
|
||||||
|
# k/v won't change if provided `num_kv_group` is 1
|
||||||
|
num_kv_group = num_attn_heads // num_kv_heads
|
||||||
|
k = repeat_kv(k, num_kv_group)
|
||||||
|
v = repeat_kv(v, num_kv_group)
|
||||||
|
out_torch = torch_attn_unpad(q, k, v, context_lengths)
|
||||||
|
|
||||||
|
assert out_torch.shape == out_triton.shape
|
||||||
|
assert torch.allclose(out_torch, out_triton, atol=1e-2, rtol=1e-3)
|
||||||
|
assert torch.allclose(k_cache_torch, k_cache_triton)
|
||||||
|
assert torch.allclose(v_cache_torch, v_cache_triton)
|
Loading…
Reference in new issue