diff --git a/colossalai/kernel/triton/__init__.py b/colossalai/kernel/triton/__init__.py index 85c4d911b..51b7fcc6c 100644 --- a/colossalai/kernel/triton/__init__.py +++ b/colossalai/kernel/triton/__init__.py @@ -8,11 +8,13 @@ except ImportError: # There may exist import error even if we have triton installed. if HAS_TRITON: + from .context_attn_unpad import context_attention_unpadded from .fused_layernorm import layer_norm from .gptq_triton import gptq_fused_linear_triton from .softmax import softmax __all__ = [ + "context_attention_unpadded", "softmax", "layer_norm", "gptq_fused_linear_triton", diff --git a/colossalai/kernel/triton/context_attn_unpad.py b/colossalai/kernel/triton/context_attn_unpad.py new file mode 100644 index 000000000..e4e09302e --- /dev/null +++ b/colossalai/kernel/triton/context_attn_unpad.py @@ -0,0 +1,262 @@ +# Applying the FlashAttention V2 as described in: +# "FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning" +# by Tri Dao, 2023 +# https://github.com/Dao-AILab/flash-attention +# +# Inspired and modified from Triton Tutorial - Fused Attention +# https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html +import torch +import triton +import triton.language as tl + + +# Triton 2.1.0 +@triton.jit +def _fwd_context_paged_attention_kernel( + Q, + K, + V, + O, + KCache, + VCache, + BLOCK_TABLES, # [num_seqs, max_blocks_per_sequence] + stride_qt, + stride_qh, + stride_qd, + stride_kt, + stride_kh, + stride_kd, + stride_vt, + stride_vh, + stride_vd, + stride_ot, + stride_oh, + stride_od, + stride_cacheb, + stride_cacheh, + stride_cached, + stride_cachebs, + stride_bts, + stride_btb, + context_lengths, + sm_scale, + KV_GROUPS: tl.constexpr, + BLOCK_SIZE: tl.constexpr, + BLOCK_DMODEL: tl.constexpr, + BLOCK_M: tl.constexpr, + BLOCK_N: tl.constexpr, +): + cur_seq_idx = tl.program_id(0) + cur_head_idx = tl.program_id(1) + block_start_m = tl.program_id(2) # Br, max_input_len // Block_M + cur_kv_head_idx = cur_head_idx // KV_GROUPS + + # NOTE It requires BLOCK_M, BLOCK_N, and BLOCK_SIZE to be the same + tl.static_assert(BLOCK_M == BLOCK_N) + tl.static_assert(BLOCK_N == BLOCK_SIZE) + + # get the current sequence length from provided context lengths tensor + cur_seq_len = tl.load(context_lengths + cur_seq_idx) + # NOTE when talking to fused QKV and a nopadding context attention, + # we assume that the input Q/K/V is contiguous, and thus here `prev_seq_len_sum` + # could be considered as the start index of the current sequence. + # FIXME might want to explore better way to get the summation of prev seq lengths. + # `tl.sum(tensor[:end])` is invalid as tensor slice is not supported in triton. + prev_seq_len_sum = 0 + for i in range(0, cur_seq_idx): + prev_seq_len_sum += tl.load(context_lengths + i) + + q_offset = prev_seq_len_sum * stride_qt + cur_head_idx * stride_qh + kv_offset = prev_seq_len_sum * stride_kt + cur_kv_head_idx * stride_kh + Q_block_ptr = tl.make_block_ptr( + base=Q + q_offset, + shape=(cur_seq_len, BLOCK_DMODEL), + strides=(stride_qt, stride_qd), + offsets=(block_start_m * BLOCK_M, 0), + block_shape=(BLOCK_M, BLOCK_DMODEL), + order=(1, 0), + ) + K_block_ptr = tl.make_block_ptr( + base=K + kv_offset, + shape=(BLOCK_DMODEL, cur_seq_len), + strides=(stride_kd, stride_kt), + offsets=(0, 0), + block_shape=(BLOCK_DMODEL, BLOCK_N), + order=(0, 1), + ) + V_block_ptr = tl.make_block_ptr( + base=V + kv_offset, + shape=(cur_seq_len, BLOCK_DMODEL), + strides=(stride_vt, stride_vd), + offsets=(0, 0), + block_shape=(BLOCK_N, BLOCK_DMODEL), + order=(1, 0), + ) + O_block_ptr = tl.make_block_ptr( + base=O + q_offset, + shape=(cur_seq_len, BLOCK_DMODEL), + strides=(stride_ot, stride_od), + offsets=(block_start_m * BLOCK_M, 0), + block_shape=(BLOCK_M, BLOCK_DMODEL), + order=(1, 0), + ) + + # block table for the current sequence + block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts + # block indexes on block table (i.e. 0, 1, 2, ..., max_blocks_per_seq) + # Consider `block_start_m` as the logical block idx in the current block table, + # as we have BLOCK_M the same size as the block size. + cur_block_table_idx = block_start_m + cur_block_id = tl.load(block_table_ptr + cur_block_table_idx * stride_btb) + kvcache_offset = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh + + offsets_m = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M) + offsets_n = tl.arange(0, BLOCK_N) + m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32) + l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) + + if block_start_m * BLOCK_M >= cur_seq_len: + return + + Q_i = tl.load(Q_block_ptr, boundary_check=(1, 0)) + + for block_start_n in range(0, (block_start_m + 1) * BLOCK_M, BLOCK_N): + block_start_n = tl.multiple_of(block_start_n, BLOCK_N) + + k = tl.load(K_block_ptr, boundary_check=(0, 1)) + S_ij = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) + S_ij += tl.dot(Q_i, k) + S_ij *= sm_scale + S_ij += tl.where(offsets_m[:, None] >= (block_start_n + offsets_n[None, :]), 0, float("-inf")) + + m_ij = tl.max(S_ij, 1) # rowmax(Sij) + m_ij = tl.maximum(m_i, m_ij) # m_ij + S_ij -= m_ij[:, None] + p_ij_hat = tl.exp(S_ij) + scale = tl.exp(m_i - m_ij) + l_ij = scale * l_i + tl.sum(p_ij_hat, 1) + acc = acc * scale[:, None] + + v = tl.load(V_block_ptr, boundary_check=(1, 0)) + p_ij_hat = p_ij_hat.to(v.type.element_ty) + + acc += tl.dot(p_ij_hat, v) + l_i = l_ij + m_i = m_ij + K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) + V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) + + acc = acc / l_i[:, None] + tl.store(O_block_ptr, acc.to(O.type.element_ty), boundary_check=(1, 0)) + + if cur_head_idx % KV_GROUPS == 0: + # Copy k to corresponding cache block + kd_offsets = tl.arange(0, BLOCK_DMODEL) + kt_offsets = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M) + k_offsets = K + kv_offset + kd_offsets[:, None] * stride_kd + kt_offsets[None, :] * stride_kt + k = tl.load(k_offsets, mask=kt_offsets[None, :] < cur_seq_len, other=0.0) + kcached_offsets = tl.arange(0, BLOCK_DMODEL) + kcachebs_offsets = tl.arange(0, BLOCK_SIZE) + kcache_offsets = ( + KCache + + kvcache_offset + + kcached_offsets[:, None] * stride_cached + + kcachebs_offsets[None, :] * stride_cachebs + ) + tl.store(kcache_offsets, k, mask=kcachebs_offsets[None, :] < cur_seq_len - block_start_m * BLOCK_SIZE) + # Copy v to corresponding cache block + vd_offsets = kd_offsets + vt_offsets = block_start_m * BLOCK_N + tl.arange(0, BLOCK_N) + v_offsets = V + kv_offset + vt_offsets[:, None] * stride_vt + vd_offsets[None, :] * stride_vd + v = tl.load(v_offsets, mask=vt_offsets[:, None] < cur_seq_len, other=0.0) + vcached_offsets = kcached_offsets + vcachebs_offsets = kcachebs_offsets + vcache_offsets = ( + VCache + + kvcache_offset + + vcachebs_offsets[:, None] * stride_cachebs + + vcached_offsets[None, :] * stride_cached + ) + tl.store(vcache_offsets, v, mask=vcachebs_offsets[:, None] < cur_seq_len - block_start_m * BLOCK_SIZE) + + return + + +def context_attention_unpadded( + q: torch.Tensor, # [num_tokens, num_heads, head_size] + k: torch.Tensor, # [num_tokens, num_kv_heads, head_size] + v: torch.Tensor, # [num_tokens, num_kv_heads, head_size] + k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_size, block_size] + v_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_size, block_size] + context_lengths: torch.Tensor, # [num_seqs] + block_tables: torch.Tensor, # [num_seqs, max_blocks_per_sequence], + block_size: int, +): + # q/k in context stage are supposed to be put into k_cache and v_cache. + # This step can be optimized in future. + q = q.contiguous() + k = k.contiguous() + v = v.contiguous() + + Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] + assert Lq == Lk == Lv + assert Lk in {32, 64, 128, 256} + assert q.shape[0] == k.shape[0] == v.shape[0] + assert k_cache.shape == v_cache.shape + assert context_lengths.shape[0] == block_tables.shape[0] + + num_tokens, num_heads, _ = q.shape + num_kv_heads = k.shape[-2] + assert num_kv_heads > 0 and num_heads % num_kv_heads == 0 + num_kv_group = num_heads // num_kv_heads + + num_seqs, max_blocks_per_seq = block_tables.shape + max_seq_len = context_lengths.max().item() + sm_scale = 1.0 / (Lq**0.5) + + output = torch.zeros_like(q) + + # NOTE For now, BLOCK_M and BLOCK_N are supposed to be equivalent with + # the size of physical cache block (i.e. `block_size`) + assert block_size in {16, 32, 64, 128} + BLOCK_M = BLOCK_N = block_size + + grid = (num_seqs, num_heads, triton.cdiv(max_seq_len, BLOCK_M)) + + _fwd_context_paged_attention_kernel[grid]( + q, + k, + v, + output, + k_cache, + v_cache, + block_tables, + q.stride(0), + q.stride(1), + q.stride(2), + k.stride(0), + k.stride(1), + k.stride(2), + v.stride(0), + v.stride(1), + v.stride(2), + output.stride(0), + output.stride(1), + output.stride(2), + k_cache.stride(0), + k_cache.stride(1), + k_cache.stride(2), + k_cache.stride(3), + block_tables.stride(0), + block_tables.stride(1), + context_lengths, + sm_scale, + num_kv_group, + block_size, + BLOCK_DMODEL=Lk, + BLOCK_M=BLOCK_M, + BLOCK_N=BLOCK_N, + ) + + return output diff --git a/tests/test_infer_ops/triton/test_context_attn_unpad.py b/tests/test_infer_ops/triton/test_context_attn_unpad.py new file mode 100644 index 000000000..8cca2af1a --- /dev/null +++ b/tests/test_infer_ops/triton/test_context_attn_unpad.py @@ -0,0 +1,158 @@ +import pytest +import torch +import torch.nn.functional as F +from packaging import version + +from colossalai.kernel.triton import context_attention_unpadded +from colossalai.utils import get_current_device + +try: + import triton # noqa + + HAS_TRITON = True +except ImportError: + HAS_TRITON = False + print("please install triton from https://github.com/openai/triton") + +TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") + + +def torch_attn_ref(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, seq_len: int, num_heads: int, head_size: int): + # For a single sequence, q,k,v [seq_len, num_heads, head_size] + assert q.shape[-1] == k.shape[-1] == v.shape[-1] == head_size + q = q.view(seq_len, num_heads, head_size) + k = k.view(seq_len, num_heads, head_size) + v = v.view(seq_len, num_heads, head_size) + q = q.transpose(0, 1) + k = k.transpose(0, 1) + v = v.transpose(0, 1) + + mask = torch.tril(torch.ones(1, seq_len, seq_len), diagonal=0).to(device=get_current_device()) + mask[mask == 0.0] = float("-inf") + mask = mask.repeat(num_heads, 1, 1) + + qk = torch.matmul(q, k.transpose(1, 2)) + attn_scores = qk / (head_size**0.5) + attn_weights = F.softmax(attn_scores.to(dtype=torch.float32) + mask, dim=-1).to(dtype=q.dtype) + out = torch.matmul(attn_weights, v).transpose(0, 1).contiguous() + out = out.reshape(-1, num_heads, head_size) + return out + + +def torch_attn_unpad(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, context_lengths: torch.Tensor): + # Process sequence one by one and cat them together. + # q,k,v [num_tokens(sum(context_lengths)), num_heads, head_size] + assert context_lengths.dim() == 1, "context_lengths should be a 1D tensor" + _, num_heads, head_size = q.shape + out_torch = [] + start_idx = 0 + for i in range(len(context_lengths)): + end_idx = start_idx + context_lengths[i].item() + torch_attn_ref_out = torch_attn_ref( + q[start_idx:end_idx], k[start_idx:end_idx], v[start_idx:end_idx], end_idx - start_idx, num_heads, head_size + ) + out_torch.append(torch_attn_ref_out) + start_idx = end_idx + return torch.cat(out_torch, dim=0) + + +# This method is adapted from src/transformers/models/llama/modeling_llama.py +# in transformers repository https://github.com/huggingface/transformers +# https://github.com/huggingface/transformers/blob/3b7675b2b844b02d4821b827871a21ad16dd446c/src/transformers/models/llama/modeling_llama.py#L273 +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (num_tokens, + num_key_value_heads, head_dim) to (num_tokens, num_attention_heads, head_dim) + """ + num_tokens, num_key_value_heads, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :].expand(num_tokens, num_key_value_heads, n_rep, head_dim) + return hidden_states.reshape(num_tokens, num_key_value_heads * n_rep, head_dim) + + +@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton") +@pytest.mark.parametrize("bsz", [4, 7, 32]) +@pytest.mark.parametrize("block_size", [16, 32, 64]) +@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32]) +@pytest.mark.parametrize("num_attn_heads", [16]) +@pytest.mark.parametrize("kv_group_num", [1, 2, 16]) +@pytest.mark.parametrize("same_context_len", [True, False]) +def test_context_attention( + bsz: int, + block_size: int, + max_num_blocks_per_seq: int, + num_attn_heads: int, + kv_group_num: int, + same_context_len: bool, +): + torch.manual_seed(123) + + dtype = torch.float16 + device = get_current_device() + num_seqs = bsz + num_kv_heads = num_attn_heads // kv_group_num + assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads." + head_size = 32 + max_seq_len = max_num_blocks_per_seq * block_size + + # It's necessary to clear cache here. + torch.cuda.empty_cache() + torch.cuda.synchronize() + torch.cuda.reset_peak_memory_stats() + + if same_context_len: + context_lengths = torch.tensor([max_seq_len for _ in range(num_seqs)], dtype=torch.int32, device=device) + else: + context_lengths = torch.randint(low=1, high=max_seq_len, size=(num_seqs,), dtype=torch.int32, device=device) + num_tokens = torch.sum(context_lengths).item() + + qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, head_size) + qkv = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5) + q, k, v = torch.split(qkv, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2) + + cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_size, block_size) + k_cache_torch = torch.zeros(size=cache_shape, dtype=dtype, device=device) + k_cache_triton = torch.zeros_like(k_cache_torch) + v_cache_torch = torch.zeros(size=cache_shape, dtype=dtype, device=device) + v_cache_triton = torch.zeros_like(v_cache_torch) + + # Mock allocation on block tables + block_id = 0 + block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32) + num_tokens_processed = 0 + for i, seq_len in enumerate(context_lengths.tolist()): + right_bound = (seq_len + block_size - 1) // block_size # open bound + block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32) + # Manually fill k_cache_torch and v_cache_torch by copying from k and v + for i in range(right_bound): + if i == right_bound - 1: + allocated_locs = seq_len % block_size or block_size + else: + allocated_locs = block_size + k_block = k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0) + v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 2, 0) + cur_block_size_occupied = k_block.shape[-1] + assert cur_block_size_occupied <= block_size, "Invalid occupied size of block during mock allocation" + k_cache_torch[block_id, :, :, :cur_block_size_occupied] = k_block + v_cache_torch[block_id, :, :, :cur_block_size_occupied] = v_block + + num_tokens_processed += allocated_locs + block_id += 1 + + block_tables = block_tables.to(device=device) + out_triton = context_attention_unpadded( + q, k, v, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size + ) + + # For GQA and MQA, repeat k, v for torch attention calculation + # k/v won't change if provided `num_kv_group` is 1 + num_kv_group = num_attn_heads // num_kv_heads + k = repeat_kv(k, num_kv_group) + v = repeat_kv(v, num_kv_group) + out_torch = torch_attn_unpad(q, k, v, context_lengths) + + assert out_torch.shape == out_triton.shape + assert torch.allclose(out_torch, out_triton, atol=1e-2, rtol=1e-3) + assert torch.allclose(k_cache_torch, k_cache_triton) + assert torch.allclose(v_cache_torch, v_cache_triton)